Skip to main content

Advertisement

Log in

MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, molecular imprinted polymer (MIP)-based impedimetric sensor has been developed to detect dengue infection at an early stage. Screen-printed carbon electrode (SPCE) was modified with electrospun nanofibers of polysulfone (PS) and then, coated with dopamine while using NS1 (non-structural protein 1—a specific and sensitive biomarker for dengue virus infection) as template during polymerization. The self-polymerization of dopamine at room temperature helps to retain exact structure of template (NS1) which results in generating geometrically fit imprinted sites for specific detection of target analyte. The electrochemical properties of MIP-modified SPCEs were studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) at every step of modification. Under optimal conditions, impedimetric measurements showed linear response in the range from 1 to 200 ng/mL. The developed sensor can selectively detect NS1 concentrations as low as 0.3 ng/mL. Moreover, impedimetric sensor system was also employed for NS1 determination in real human serum samples and satisfying recoveries varying from 95 to 97.14% were obtained with standard deviations of less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abu-Thabit, N., Umar, Y., Ratemi, E., Ahmad, A., & Ahmad Abuilaiwi, F. (2016). A flexible optical pH sensor based on polysulfone membranes coated with pH-responsive polyaniline nanofibers. Sensors, 16, 986.

    Article  Google Scholar 

  2. Baeumner, A. J., Schlesinger, N. A., Slutzki, N. S., Romano, J., Lee, E. M., & Montagna, R. A. (2002). Biosensor for dengue virus detection: Sensitive, rapid, and serotype specific. Analytical Chemistry, 74, 1442–1448.

    Article  CAS  Google Scholar 

  3. Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32, 363–371.

    Article  CAS  Google Scholar 

  4. Bharaj, P., Chahar, H. S., Pandey, A., Diddi, K., Dar, L., Guleria, R., Kabra, S. K., & Broor, S. (2008). Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India. Virology Journal, 5, 1.

    Article  Google Scholar 

  5. Cavalcanti, I., Silva, B., Peres, N., Moura, P., Sotomayor, M. D. P. T., Guedes, M., & Dutra, R. (2012). A disposable chitosan-modified carbon fiber electrode for dengue virus envelope protein detection. Talanta, 91, 41–46.

    Article  CAS  Google Scholar 

  6. Cavalcanti, I. T., Guedes, M. I., Sotomayor, M. D., Yamanaka, H., & Dutra, R. F. (2012). A label-free immunosensor based on recordable compact disk chip for early diagnostic of the dengue virus infection. Biochemical Engineering Journal, 67, 225–230.

    Article  CAS  Google Scholar 

  7. Cieplak, M., & Kutner, W. (2016). Artificial biosensors: How can molecular imprinting mimic biorecognition? Trends in Biotechnology, 34, 922–941.

    Article  CAS  Google Scholar 

  8. Crapnell, R. D., Hudson, A., Foster, C. W., Eersels, K., Grinsven, B. v., Cleij, T. J., Banks, C. E., & Peeters, M. (2019). Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors, 19, 1204.

    Article  CAS  Google Scholar 

  9. Darwish, N. T., Alrawi, A. H., Sekaran, S. D., Alias, Y., & Khor, S. M. (2016). Electrochemical immunosensor based on antibody-nanoparticle hybrid for specific detection of the dengue virus NS1 biomarker. Journal of the Electrochemical Society, 163, B19–B25.

    Article  CAS  Google Scholar 

  10. de Souza, V. A. U. F., Tateno, A. F., Oliveira, R. R., Domingues, R. B., Araújo, E. S., Kuster, G. W., & Pannuti, C. S. (2007). Sensitivity and specificity of three ELISA-based assays for discriminating primary from secondary acute dengue virus infection. Journal of Clinical Virology, 39, 230–233.

    Article  Google Scholar 

  11. Dias, A. C. M., Gomes-Filho, S. L., Silva, M. M., & Dutra, R. F. (2013). A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein. Biosensors and Bioelectronics, 44, 216–221.

    Article  CAS  Google Scholar 

  12. Fernandez, R., & Vazquez, S. (1990). Serological diagnosis of dengue by an ELISA inhibition method (EIM). Memorias do Instituto Oswaldo Cruz, 85(3), 347–351.

    Article  CAS  Google Scholar 

  13. Gui, R., Jin, H., Guo, H., & Wang, Z. (2018). Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosensors and Bioelectronics, 100, 56–70.

    Article  CAS  Google Scholar 

  14. Hasan, S., Jamdar, S. F., Alalowi, M., & Al Beaiji, S. M. A. A. (2016). Dengue virus: A global human threat: Review of literature. Journal of International Society of Preventive & Community Dentistry, 6, 1.

    Article  Google Scholar 

  15. Hayat, A., Barthelmebs, L., & Marty, J.-L. (2012). Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sensors and Actuators B: Chemical, 171, 810–815.

    Article  Google Scholar 

  16. Hirayama, T., Mizuno, Y., Takeshita, N., Kotaki, A., Tajima, S., Omatsu, T., Sano, K., Kurane, I., & Takasaki, T. (2012). Detection of dengue virus genome in urine by real-time reverse transcriptase PCR: A laboratory diagnostic method useful after disappearance of the genome in serum. Journal of Clinical Microbiology, 50(6), 2047–2052.

    Article  Google Scholar 

  17. Jahanshahi, P., Zalnezhad, E., Sekaran, S. D., & Adikan, F. R. M. (2014). Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor. Scientific Reports, 4, 3851.

    Article  Google Scholar 

  18. Justino, C. I., Freitas, A. C., Pereira, R., Duarte, A. C., & Santos, T. A. R. (2015). Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends in Analytical Chemistry, 68, 2–17.

    Article  CAS  Google Scholar 

  19. Libraty, D. H., Young, P. R., Pickering, D., Endy, T. P., Kalayanarooj, S., Green, S., Vaughn, D. W., Nisalak, A., Ennis, F. A., & Rothman, A. L. (2002). High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. The Journal of Infectious Diseases, 186(8), 1165–1168.

    Article  CAS  Google Scholar 

  20. Nawaz, M. H., Hayat, A., Catanante, G., Latif, U., & Marty, J. L. (2018). Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Analytica Chimica Acta, 1026, 1–7.

    Article  CAS  Google Scholar 

  21. World Health Organization. (2009). Dengue guidelines for diagnosis, treatment, prevention and control: New edition. Geneva: World Health Organization.

  22. Parida, M., Horioke, K., Ishida, H., Dash, P. K., Saxena, P., Jana, A. M., Islam, M. A., Inoue, S., Hosaka, N., & Morita, K. (2005). Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay. Journal of Clinical Microbiology, 43(6), 2895–2903.

    Article  CAS  Google Scholar 

  23. Phuong, C. X. T., Nhan, N. T., Wills, B., Kneen, R., Ha, N. T. T., Mai, T. T. T., Huynh, T. T. T., Lien, D. T. K., Solomon, T., & Simpson, J. A. (2002). Evaluation of the World Health Organization standard tourniquet test and a modified tourniquet test in the diagnosis of dengue infection in Viet Nam. Tropical Medicine & International Health, 7, 125–132.

    Article  Google Scholar 

  24. Postma, A., Yan, Y., Wang, Y., Zelikin, A. N., Tjipto, E., & Caruso, F. (2009). Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials, 21, 3042–3044.

    Article  CAS  Google Scholar 

  25. Rhouati, A., Bakas, I. and Marty, J. L. (2019) MIPs and aptamers as artificial receptors in advanced separation techniques: Application in food analysis. Handbook of Smart Materials in Analytical Chemistry, pp 825–857.

  26. Saylan, Y., Akgönüllü, S., Yavuz, H., Ünal, S. and Denizli, A. (2019). Molecularly imprinted polymer based sensors for medical applications. Sensors, 19.

  27. Senthamizhan, A., Balusamy, B., Aytac, Z., & Uyar, T. (2016). Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H 2 O 2. Analytical and Bioanalytical Chemistry, 408(5), 1347–1355.

    Article  CAS  Google Scholar 

  28. Shepard, D. S., Undurraga, E. A., & Halasa, Y. A. (2013). Economic and disease burden of dengue in Southeast Asia. PLoS Neglected Tropical Diseases, 7, e2055.

    Article  Google Scholar 

  29. Silva, M. M., Dias, A. C., Silva, B. V., Gomes-Filho, S. L., Kubota, L. T., Goulart, M. O., & Dutra, R. F. (2015). Electrochemical detection of dengue virus NS1 protein with a poly (allylamine)/carbon nanotube layered immunoelectrode. Journal of Chemical Technology & Biotechnology, 90, 194–200.

    Article  CAS  Google Scholar 

  30. Sinawang, P. D., Rai, V., Ionescu, R. E., & Marks, R. S. (2016). Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosensors and Bioelectronics, 77, 400–408.

    Article  CAS  Google Scholar 

  31. Teles, F. S. R. R. (2011). Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: A review. Analytica Chimica Acta, 687(1), 28–42.

    Article  CAS  Google Scholar 

  32. Zhu, T., He, J. a., Chen, W., Ho, H. P., Kong, S. K., Wang, C., Long, J., Fong-Chuen Loo, J., & Gu, D. (2018). Development of peptide-based chemiluminescence enzyme immunoassay (CLEIA) for diagnosis of dengue virus infection in human. Analytical Biochemistry, 556, 112–118.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Higher Education Commission (HEC) of Pakistan for financial support under project no. 5411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Latif.

Ethics declarations

Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, R., Rhouati, A., Hayat, A. et al. MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl Biochem Biotechnol 191, 1384–1394 (2020). https://doi.org/10.1007/s12010-020-03285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03285-y

Keywords

Navigation