Skip to main content
Log in

Effects of Excess and Limited Phosphate on Biomass, Lipid and Fatty Acid Contents and the Expression of Four Fatty Acid Desaturase Genes in the Tropical Selenastraceaen Messastrum gracile SE-MC4

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the effects of limited and excess phosphate on biomass content, oil content, fatty acid profile and the expression of three fatty acid desaturases in Messastrum gracile SE-MC4 were determined. It was found that total biomass (0.67–0.83 g L−1), oil content (30.99–38.08%) and the duration for cells to reach stationary phase (25–27 days) were not considerably affected by phosphate limitation. However, excess phosphate slightly reduced total biomass and oil content to 0.50 g L−1 and 25.36% respectively. The dominant fatty acids in M. gracile, pamitic acid (C16:0) and oleic acid (C18:1) which constitute more than 81% of the total fatty acids remained relatively high and constant across all phosphate concentrations. Reduction of phosphate concentration to 25% and below significantly increased total MUFA, whereas increasing phosphate concentration to ≥ 50% and ≥ 100% significantly increased total SFA and PUFA content respectively. The expression of omega-3 fatty acid desaturase (ω-3 FADi1, ω-3 FADi2) and omega-6 fatty acid desaturase (ω-6 FAD) was increased under phosphate limitation, especially at ≤ 12.5% phosphate, whereas levels of streoyl-ACP desaturase (SAD) transcripts were relatively unchanged across all phosphate concentrations. The first isoform of ω-3 FAD (ω-3 FADi) displayed a binary upregulation under limited (≤ 12.5%) and excess (200%) phosphate. The expression of ω-6 FAD, ω-3 FAD and SAD were inconsistent with the accumulation of oleic acid (C18:1), linoleic acid (C18:2) and alpha-linolenic acid (C18:3), suggesting that these genes may be regulated indirectly by phosphate availability via post-transcriptional or post-translational mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology Biotechnology, 35(5), 421.

    CAS  PubMed  Google Scholar 

  2. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    CAS  PubMed  Google Scholar 

  3. Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2, 759–766.

    CAS  Google Scholar 

  4. Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration & Biodegradation, 85, 506–510.

    CAS  Google Scholar 

  5. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621–639.

    CAS  PubMed  Google Scholar 

  6. Tanabe, Y., Kato, S., Matsuura, H., & Watanabe, M. M. (2012). A Botryococcus strain with bacterial ectosymbionts grows fast and produces high amount of hydrocarbons. Procedia Environmental Sciences, 15, 22–26.

    CAS  Google Scholar 

  7. Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, C., & Perales, J. A. (2014). Lipid production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Applied Biochemistry and Biotechnology, 174(4), 1471–1483.

    PubMed  Google Scholar 

  8. Jazzar, S., Berrejeb, N., Messaoud, C., Marzouki, M. N., & Smaali, I. (2016). Growth parameters, photosynthetic performance, and biochemical characterization of newly isolated green microalgae in response to culture condition variations. Applied Biochemistry and Biotechnology, 179(7), 1290–1308.

    CAS  PubMed  Google Scholar 

  9. Mohy El-Din, S. M. (2019). Accumulation of lipids and triglycerides in isochrysis galbana under nutrient stress. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-02997-0.

  10. Bogen, C., Klassen, V., Wichmann, J., Russa, M. L., Doebbe, A., Grundmann, M., Uronen, P., Kruse, O., & Mussgnug, J. H. (2013). Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresource Technology, 133, 622–626.

    CAS  PubMed  Google Scholar 

  11. Yee, W. (2016). Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini review. World Journal of Microbiology and Biotechnology, 32, 64.

    PubMed  Google Scholar 

  12. Sipaúba-Tavares, L. H., Millan, R. N., Berchielli, F. A., & Braga, F. M. S. (2011). Use of alternative media and different types of recipients in a laboratory culture of Ankistrodesmus gracilis (Reinsch) Korshikov (Chlorophyta). Acta Scientiarum Biological Sciences, 33, 247–253.

    Google Scholar 

  13. Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135–1142.

    PubMed  Google Scholar 

  14. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607–4638.

    Google Scholar 

  15. Ray, K., Mukherjee, C., & Gosh, A. N. (2013). A way to curb phosphorous toxicity in the environment: use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorous biofertilizer for Indian agriculture. Environmental Science & Technology, 47, 11378–11379.

    CAS  Google Scholar 

  16. Yang, F., Xiang, W., Li, T., & Long, L. (2018). Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Scientific Reports, 8, 16420.

    PubMed  PubMed Central  Google Scholar 

  17. Reitan, K. I., Rainuzzo, J. R., & Olsen, Y. (1994). Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology, 30(6), 972–979.

    CAS  Google Scholar 

  18. Gao, Y., Yang, M., & Wang, C. (2013). Nutrient deprivation enhances lipid content in marine microalgae. Bioresource Technology, 147, 484–491.

    CAS  PubMed  Google Scholar 

  19. Ahmad, A., Osman, S. M., Cha, T. S., & Loh, S. H. (2016). Phosphate-induced changes in fatty acid biosynthesis in Chlorella sp. KS-MA2 strain. BioTechnologia, 97(4), 295–304.

    CAS  Google Scholar 

  20. Michelon, W., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Prandini, J. M., & Soares, H. M. (2016). Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology, 178(7), 1407–1419.

    CAS  PubMed  Google Scholar 

  21. Cha, T. S., Chen, J. W., Goh, E. G., Aziz, A., & Loh, S. H. (2011). Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology, 102, 10633–10640.

    CAS  PubMed  Google Scholar 

  22. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.

    CAS  PubMed  Google Scholar 

  23. Brembu, T., Mühlroth, A., Alipanah, L., & Bones, A. M. (2017). The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of Royal Society B, 372, 20160406.

    Google Scholar 

  24. Solovchenko, A., Verschoor, A. M., Jablonowski, N. D., & Nedbal, L. (2016). Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnology Advances, 34(5), 550–564.

    CAS  PubMed  Google Scholar 

  25. Khozin-Golberg, I., & Cohen, Z. (2006). The effect of phosphate starvation and the lipid fatty acid composition of the freshwater eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701.

    Google Scholar 

  26. Rocha, G. S., Parrish, C. C., Lombardi, A. T., & Melão, M. D. G. G. (2018). Biochemical and physiological responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus concentrations. Journal of Applied Phycology, 30(4), 2167–2177.

    CAS  Google Scholar 

  27. Brown, N., & Shilton, A. (2014). Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Reviews in Environmental Science and Bio/Technology, 13(3), 321–328.

    CAS  Google Scholar 

  28. Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorous concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresource Technology, 101, 5494–5500.

    CAS  PubMed  Google Scholar 

  29. El-Khassas, H. Y. (2013). Growth and fatty acid profile on the marine microalga Picochlorum sp. grown under nutrient stress. Egyptian Journal of Aquatic Research, 39, 233–239.

    Google Scholar 

  30. Ruangsomboon, S. (2012). Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource Technology, 109, 261–265.

    CAS  PubMed  Google Scholar 

  31. Ruangsomboon, S., Ganmanee, M., & Choochote, S. (2013). Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. Journal of Applied Phycology, 25(3), 867–874.

    CAS  Google Scholar 

  32. Roopnarain, A., Gray, V. M., & Sym, S. D. (2014). Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresource Technology, 156, 408–411.

    CAS  PubMed  Google Scholar 

  33. Liang, K., Zhang, Q., Gu, M., & Cong, W. (2013). Effect of phosphorous on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology, 25, 311–318.

    CAS  Google Scholar 

  34. Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281–291.

    CAS  PubMed  Google Scholar 

  35. Challagulla, V., Fabbro, L., & Nayar, S. (2015). Biomass, lipid productivity and fatty acid composition of fresh water microalga Rhopalosolen saccatus cultivated under phosphorous limited conditions. Algal Research, 8, 69–75.

    Google Scholar 

  36. Upchurch, R. G. (2008). Fatty acid unsaturation, mobilization and regulation in the response of plant to stress. Biotechnology Letters, 30(6), 967–977.

    CAS  PubMed  Google Scholar 

  37. Liu, J., Sun, Z., Zhong, Y., Huang, J., Hu, Q., & Chen, F. (2012). Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta, 236(6), 1665–1676.

    CAS  PubMed  Google Scholar 

  38. Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A., & Cha, T. S. (2015). Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Research, 9, 14–20.

    Google Scholar 

  39. Domergue, F., Spiekermann, P., Lerchl, J., Beckmann, C., Kilian, O., Kroth, P. G., Boland, W., Zähringer, U., & Heinz, E. (2003). New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiology, 131(4), 1648–1660.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Heppard, E. P., Kinney, A. J., Stecca, K. L., & Miao, G. H. (1996). Developmental and growth temperature regulation of two different microsomal [omega]-6 desaturase genes in soybeans. Plant Physiology, 110(1), 311–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, Y., Chi, X., Yang, Q., Li, Z., Liu, S., Gan, Q., & Qin, S. (2009). Molecular cloning and stress-dependent expression of a gene encoding Δ 12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles, 13, 875.

    CAS  PubMed  Google Scholar 

  42. Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A., & Cha, T. S. (2015). Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65–71.

    CAS  PubMed  Google Scholar 

  43. Jusoh, M., Loh, S. H., Aziz, A., & Cha, T. S. (2019). Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthesis genes in Chlorella vulgaris UMT-M1. Applied Biochemistry and Biotechnology, 188(2), 450–459.

    CAS  PubMed  Google Scholar 

  44. Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., & Menand, B. (2009). Post-transcriptional regulation of gene expression in plants during abiotic stress. International Journal of Molecular Sciences, 10(7), 3168–3185.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. O'Quin, J. B., Bourassa, L., Zhang, D., Shockey, J. M., Gidda, S. K., Fosnot, S., Chapman, K. D., Mullen, R. T., & Dyer, J. M. (2010). Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway. Journal of Biological Chemistry, 285, 21781–21796.

    CAS  PubMed  Google Scholar 

  46. Shah, F. H., Rashid, O., & San, C. T. (2000). Temporal regulation of two isoforms of cDNA clones encoding delta 9-stearoyl-ACP desaturase from oil palm (Elaies guineensis). Plant Science, 152(1), 27–33.

    CAS  Google Scholar 

  47. Mikkilineni, V., & Rocheford, T. (2003). Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theoretical and Applied Genetics, 106(7), 1326–1332.

    CAS  PubMed  Google Scholar 

  48. Vrinten, P., Hu, Z., Munchinsky, M. A., Rowland, G., & Qiu, X. (2005). Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiology, 139(1), 79–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajwade, A. V., Kadoo, N. Y., Borikar, S. P., Harsulkar, A. M., Ghorpade, P. B., & Gupta, V. S. (2014). Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. Phytochemistry, 98, 41–53.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research project was funded under the Science Fund (Project No: 05-01-12—SF1007) from the Ministry of Agriculture (MOA) Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

TSC, KAM, AA and SHL conceived and designed the research; KAM conducted the experiments. TSC, KAM, WY, AA and SHL analysed and interpreted data. KAM and WY wrote the manuscript with guidance from TSC, AA and SHL. All authors read and approved the manuscript.

Corresponding author

Correspondence to Thye San Cha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anne-Marie, K., Yee, W., Loh, S.H. et al. Effects of Excess and Limited Phosphate on Biomass, Lipid and Fatty Acid Contents and the Expression of Four Fatty Acid Desaturase Genes in the Tropical Selenastraceaen Messastrum gracile SE-MC4. Appl Biochem Biotechnol 190, 1438–1456 (2020). https://doi.org/10.1007/s12010-019-03182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03182-z

Keywords

Navigation