Skip to main content

Advertisement

Log in

Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We demonstrate the feasibility of algal lipid production and bioelectricity generation with concurrent treatment of municipal solid waste (MSW) leachate in a double-chamber algal-assisted microbial fuel cell (AAMFC). The cathode chamber was loaded with Synechococcus sp. and MSW leachate whereas anode chamber was loaded with anaerobic microflora. While treating 50% MSW leachate, highest power density (95.63 mW/m2), current density (2.48 A/m2), and biomass concentration (2.54 g/l) were observed. The algal growth in the cathode chamber increased the oxygen concentration from 5.5 to 8.6 mg/l. Secondly, we studied the influence of salinity in AAMFC performance. The addition of 30 mM NaCl with 50% leachate increased the power and current density to 110.92 mW/m2 and 5.169 A/m2, respectively. It also increased the biomass concentration, protein, and lipid content. The analysis of fatty acid profile of algae confirmed the presence of palmitic acid, stearic acid, and linoleic acid. The proposed technique is effective for concurrent treatment of MSW leachate and power generation besides algal lipid production without external aeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

X :

Concentration of algae at time t (h)

K :

Carrying capacity of the algal biomass concentration (g/l)

μ :

Specific growth rate (/day)

a :

Constant

R s :

Rate of nutrient removal (mg/l/day)

S i :

Initial concentration of the substrate (mg/l)

S f :

Final concentration of the substrate (mg/l)

ti and tf :

Initial and final time corresponding to the substrate concentration (h)

Abbreviations

AAMFC :

algal-assisted microbial fuel cells

MSW :

municipal solid waste

FAME :

fatty acid methyl ester

COD :

chemical oxygen demand

BOD :

biological oxygen demand

TDS :

total dissolved solids

TSS :

total suspended solids

TN :

total nitrogen

TP :

total phosphorus

DO :

dissolved oxygen

References

  1. Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D., & Colprim, J. (2011). Microbial fuel cell application in landfill leachate treatment. 185, 763–767. https://doi.org/10.1016/j.jhazmat.2010.09.086.

  2. Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels : Cost , energy balance , environmental impacts and future prospects. Biomass and Bioenergy, 53(0), 29–38. https://doi.org/10.1016/j.biombioe.2012.12.019.

    Article  Google Scholar 

  3. Choi, H. J., & Lee, S. M. (2015). Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess and Biosystems Engineering, 38(4), 761–766. https://doi.org/10.1007/s00449-014-1317-z.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Y., Ho, S. H., Cheng, C. L., Nagarajan, D., Guo, W. Q., Lin, C., Li, S., Ren, N., & Chang, J. S. (2017). Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7–14. https://doi.org/10.1016/j.biortech.2017.03.122.

    Article  CAS  PubMed  Google Scholar 

  5. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. 8, 64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003.

  6. Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Biomass and Bioenergy Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass and Bioenergy, 1–7. https://doi.org/10.1016/j.biombioe.2015.05.017.

  7. Xin, L., Hong-ying, H., Ke, G., & Jia, Y. (2010). Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp . LX1 under different kinds of. Ecological Engineering, 36(4), 379–381. https://doi.org/10.1016/j.ecoleng.2009.11.003.

    Article  Google Scholar 

  8. Laliberté, G., Lessard, P., De la Noüe, J., & Sylvestre, S. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technology, 59(2–3), 227–233. https://doi.org/10.1016/S0960-8524(96)00144-7.

    Article  Google Scholar 

  9. Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs. Bioelectrochemistry, 104, 58–64. https://doi.org/10.1016/j.bioelechem.2015.03.001.

    Article  CAS  PubMed  Google Scholar 

  10. Puig, S., Serra, M., Coma, M., Cabré, M., Dolors Balaguer, M., & Colprim, J. (2011). Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials, 185(2–3), 763–767. https://doi.org/10.1016/j.jhazmat.2010.09.086.

    Article  CAS  PubMed  Google Scholar 

  11. Gálvez, A., Greenman, J., & Ieropoulos, I. (2009). Bioresource Technology Landfill leachate treatment with microbial fuel cells ; scale-up through plurality. Bioresource Technology, 100(21), 5085–5091. https://doi.org/10.1016/j.biortech.2009.05.061.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, R. T., Novak, J., & Douglas Goldsmith, C. (2012). Evaluation of on-site biological treatment for landfill leachates and its impact: A size distribution study. Water Research, 46(12), 3837–3848. https://doi.org/10.1016/j.watres.2012.04.022.

    Article  CAS  PubMed  Google Scholar 

  13. You, S. H. I. J., Zhao, Q. L., Jiang, J. U. N. Q., Zhang, J. I. N. N., & Zhao, S. H. I. Q. (2006). Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. Journal of Environmental Science and Health, Part A, 41(12), 2721–2734. https://doi.org/10.1080/10934520600966284.

    Article  CAS  Google Scholar 

  14. Greenman, J., Gálvez, A., Giusti, L., & Ieropoulos, I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 44, 112–119. https://doi.org/10.1016/j.enzmictec.2008.09.012.

    Article  CAS  Google Scholar 

  15. Liu, H., & Ramnarayanan, R. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. 38(7), 2281–2285.

  16. Kim, J. R. (2015). Enhanced performance of an air – cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor, (August). https://doi.org/10.1016/j.biortech.2015.06.062

  17. Maity, J. P. (2014). The production of biofuel and bioelectricity associated with wastewater treatment by green algae, (September 2015). https://doi.org/10.1016/j.energy.2014.06.023

  18. Li, X. M., Cheng, K. Y., Selvam, A., & Wong, J. W. C. (2013). Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochemistry, 48(2), 283–288. https://doi.org/10.1016/j.procbio.2012.10.001.

    Article  CAS  Google Scholar 

  19. Shukla, M., & Kumar, S. (2018). Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renewable and Sustainable Energy Reviews, 82(June 2017), 402–414. https://doi.org/10.1016/j.rser.2017.09.067.

    Article  CAS  Google Scholar 

  20. Kim, H. S., & Min, B. (2014). Corrigendum to “ Low-cost separators for enhanced power production and field application of microbial fuel cells ( MFCs ).” 132(August 2015), 45–46. https://doi.org/10.1016/j.electacta.2014.08.063

  21. Strik, D. P, Terlouw, H., Hamelers, H. V. Buisman, C. J. (2008). Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell ( PAMFC ). 659–668. https://doi.org/10.1007/s00253-008-1679-8

  22. Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N., & Ren, N. (2010). Sequestration of CO2discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 25(12), 2639–2643. https://doi.org/10.1016/j.bios.2010.04.036.

    Article  CAS  PubMed  Google Scholar 

  23. Fang, H. H. P., Zhu, H., & Zhang, T. (2006). Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 31(15), 2223–2230. https://doi.org/10.1016/j.ijhydene.2006.03.005.

    Article  CAS  Google Scholar 

  24. Xiao, L., Young, E. B., Berges, J. A., & He, Z. (2012). Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environmental Science and Technology, 46(20), 11459–11466. https://doi.org/10.1021/es303144n.

    Article  CAS  PubMed  Google Scholar 

  25. Pandit, S., Nayak, B. K., & Das, D. (2012). Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Bioresource Technology, 107, 97–102. https://doi.org/10.1016/j.biortech.2011.12.067.

    Article  CAS  PubMed  Google Scholar 

  26. Cui, Y., Rashid, N., Hu, N., Saif, M., Rehman, U., & Han, J. (2014). Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Conversion and Management, 79, 674–680. https://doi.org/10.1016/j.enconman.2013.12.032.

    Article  CAS  Google Scholar 

  27. Gouveia, L., Neves, C., Sebastião, D., Nobre, B. P., & Matos, C. T. (2014). Bioresource technology effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. 154, 171–177. https://doi.org/10.1016/j.biortech.2013.12.049

  28. Venkata Mohan, S., Srikanth, S., Chiranjeevi, P., Arora, S., & Chandra, R. (2014). Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresource Technology, 166, 566–574. https://doi.org/10.1016/j.biortech.2014.05.081.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenbaum, M., He, Z., & Angenent, L. T. (2010). Light energy to bioelectricity : photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21(3), 259–264. https://doi.org/10.1016/j.copbio.2010.03.010.

    Article  CAS  PubMed  Google Scholar 

  30. Samsudeen, N., Radhakrishnan, T. K., & Matheswaran, M. (2015). Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresource Technology, 195, 242–247. https://doi.org/10.1016/j.biortech.2015.07.023.

    Article  CAS  PubMed  Google Scholar 

  31. Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32(April), 131–141. https://doi.org/10.1016/j.algal.2018.03.015.

    Article  Google Scholar 

  32. Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). APHA Method 9221: Standard Methods for the Examination of Water and Wastewater. 552.

  33. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  34. Protocol, P. (1994). PROTEINS (LOWRY) PROTOCOL 1. INTRODUCTION The “Lowry Assay: Protein by Folin Reaction” Lowry. Proteins, 5, 1–5.

    Google Scholar 

  35. Folch. (1987). a Simple. 55(5), 999–1033.

  36. Subhash, G. V., Chandra, R., & Mohan, S. V. (2013). Biore source Tec hnology Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresource Technology, 136, 644–653. https://doi.org/10.1016/j.biortech.2013.02.035.

    Article  CAS  Google Scholar 

  37. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jia, H., & Yuan, Q. (2016). Removal of nitrogen from wastewater using microalgae and microalgae-bacteria consortia. Cogent Environmental Science, 2(1), 1–15. https://doi.org/10.1080/23311843.2016.1275089.

    Article  CAS  Google Scholar 

  39. Chevalier, P., Proulx, D., Lessard, P., Vincent, W. F., & De La Noüe, J. (2000). Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12(2), 105–112. https://doi.org/10.1023/A:1008168128654.

    Article  CAS  Google Scholar 

  40. Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749. https://doi.org/10.1016/j.enconman.2010.06.010.

    Article  CAS  Google Scholar 

  41. Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89(3), 677–684. https://doi.org/10.1016/j.fuel.2009.10.011.

    Article  CAS  Google Scholar 

  42. Moisander, P. H., McClinton, E., & Paerl, H. W. (2002). Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecology, 43(4), 432–442. https://doi.org/10.1007/s00248-001-1044-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for granting the Senior Research Fellowship (CSIR-SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karuppan Muthukumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmidevi, R., Gandhi, N.N. & Muthukumar, K. Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell. Appl Biochem Biotechnol 191, 852–866 (2020). https://doi.org/10.1007/s12010-019-03160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03160-5

Keywords

Navigation