Skip to main content
Log in

Phytase Immobilization on Hydroxyapatite Nanoparticles Improves Its Properties for Use in Animal Feed

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 25 October 2019

This article has been updated

Abstract

The enzyme phytase has important applications in animal feed, because it favors the bioavailability of phosphorus present in phytate, an antinutritional compound widely found associated with plant proteins. However, for feed applications, the phytase must withstand high temperatures during the feed pelleting process, as well as the gastrointestinal conditions of the animal. This work evaluates the feasibility of immobilizing phytase on hydroxyapatite (HA) nanoparticles, in order to improve its properties. HA is a material with excellent physicochemical characteristics for enzyme immobilization, and it can also act as an inorganic source of phosphorus and calcium in animal feed. The strong affinity of the phytase for the support resulted in rapid adsorption, with total immobilization yield and recovered activity greater than 100%. After immobilization, the phytase showed a broader activity profile in terms of pH and temperature, together with considerably higher thermoresistance at 80 and 90 °C. As a proof of concept, it was shown that the phytase immobilized on HA presented good resistance to acidic conditions and resistance to proteolysis when passing through simulated gastrointestinal conditions of fish. The findings showed that phytase immobilized onto HA presents suitable properties and has great potential for use in animal feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 25 October 2019

    In the original version of this article, under <Emphasis Type="Bold">Calculation of Immobilization Parameters</Emphasis> heading, the presentation of the equations are incorrect. The correct presentation of the equations are given below:

  • 25 October 2019

    In��the original version of this article, under Calculation of Immobilization Parameters heading, the presentation of the equations are incorrect. The correct presentation of the equations are given below:

References

  1. Konietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science and Technology, 37(7), 791–812.

    CAS  Google Scholar 

  2. Trouillefou, C. M., Le Cadre, E., Cacciaguerra, T., Cunin, F., Plassard, C., & Belamie, E. (2015). Protected activity of a phytase immobilized in mesoporous silica with benefits to plant phosphorus nutrition. Journal of Sol-Gel Science and Technology, 74(1), 55–65.

    CAS  Google Scholar 

  3. Garcia-Mantrana, I., Yebra, M. J., Haros, M., & Monedero, V. (2016). Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. International Journal of Food Microbiology, 216, 18–24.

    CAS  PubMed  Google Scholar 

  4. Quan, C. S., Fan, S. D., & Ohta, Y. (2003). Immobilization of Candida krusei cells producing phytase in alginate gel beads: an application of the preparation of myo-inositol phosphates. Applied Microbiology and Biotechnology, 62(1), 41–47.

    CAS  PubMed  Google Scholar 

  5. Sapna, J. J., & Singh, B. (2016). Characteristics and biotechnological applications of bacterial phytases. Process Biochemistry, 51(2), 159–169.

    Google Scholar 

  6. Viveros, A., Centeno, C., Brenes, A., Canales, R., & Lozano, A. (2000). Phytase and acid phosphatase activities in plant feedstuffs. Journal of Agricultural and Food Chemistry, 48(9), 4009–4013.

    CAS  PubMed  Google Scholar 

  7. Cheryan, M. (1980). Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition, 13(4), 297–335.

    CAS  PubMed  Google Scholar 

  8. Cao, L., Wang, W. M., Yang, C. T., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., & Li, D. P. (2007). Application of microbial phytase in fish feed. Enzyme and Microbial Technology, 40(4), 497–507.

    CAS  Google Scholar 

  9. Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. D., Bories, G., Chesson, A., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., Lopez-Alonso, M., Puente, S. L., Mantovani, A., Mayo, B., Ramos, F., Saarela, M., Villa, R. E., Wallace, R. J., Wester, P., Brantom, P., Dierick, N. A., Glandorf, B., Herman, L., Karenlampi, S., Aguilera, J., Anguita, M., Cocconcelli, P. S., & Subst, E. P. A. P. (2017). Safety and efficacy of Natuphos (R) E (6-phytase) as a feed additive for avian and porcine species. Efsa Journal, 15, 3.

    Google Scholar 

  10. Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. D., Bories, G., Chesson, A., Cocconcelli, P. S., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., Puente, S. L., Lopez-Alonso, M., Mantovani, A., Mayo, B., Ramos, F., Rychen, G., Saarela, M., Villa, R. E., Wallace, R. J., Wester, P., Additives, E. P., & Prod Subst Used Animal Feed, F. (2016). Safety and efficacy of RONOZYME (R) HiPhos (6-phytase) as a feed additive for sows and fish. Efsa Journal, 14, 10.

    Google Scholar 

  11. Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., de Lourdes Bastos, M., Bories, G., Chesson, A., Cocconcelli, P. S., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., Alonso, M. L., Puente, S. L., Mantovani, A., Mayo, B., Ramos, F., Saarela, M., Villa, R. E., Wallace, R. J., Wester, P., Brantom, P., Dierick, N. A., Anguita, M., Efsa Panel, A., & Prod. (2017). Safety and efficacy of OPTIPHOS (R) (6-phytase) as a feed additive for finfish. Efsa Journal, 15, 10.

    Google Scholar 

  12. Pontoppidan, K., Pettersson, D., & Sandberg, A. S. (2007). Peniophora lycii phytase is stabile and degrades phytate and solubilises minerals in vitro during simulation of gastrointestinal digestion in the pig. Journal of the Science of Food and Agriculture, 87(14), 2700–2708.

    CAS  PubMed  Google Scholar 

  13. Nielsen, A. V. F., Nyffenegger, C., & Meyer, A. S. (2015). Performance of microbial phytases for gastric inositol phosphate degradation. Journal of Agricultural and Food Chemistry, 63(3), 943–950.

    CAS  PubMed  Google Scholar 

  14. Cian, R. E., Bacchetta, C., Cazenave, J., & Drago, S. R. (2018). Extruded fish feed with high residual phytase activity and low mineral leaching increased P-mesopotamicus mineral retention. Animal Feed Science and Technology, 240, 78–87.

    CAS  Google Scholar 

  15. Zhang, G. Q., Dong, X. F., Wang, Z. H., Zhang, Q., Wang, H. X., & Tong, J. M. (2010). Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresource Technology, 101(11), 4125–4131.

    CAS  PubMed  Google Scholar 

  16. Ranjan, B., Singh, B., & Satyanarayana, T. (2015). Characteristics of recombinant phytase (rSt-Phy) of the thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods. Applied Biochemistry and Biotechnology, 177(8), 1753–1766.

    CAS  PubMed  Google Scholar 

  17. Ushasree, M. V., Vidya, J., & Pandey, A. (2015). Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121. Applied Biochemistry and Biotechnology, 175(6), 3084–3092.

    CAS  PubMed  Google Scholar 

  18. Harati, J., Siadat, S. O. R., Taghavian, H., Kaboli, S., & Khorshidi, S. (2017). Improvement in biochemical characteristics of glycosylated phytase through immobilization on nanofibers. Biocatalysis and Agricultural Biotechnology, 12, 96–103.

    Google Scholar 

  19. Zhang, W. Z., & Xu, F. (2015). Hierarchical composites promoting immobilization and stabilization of Phytase via transesterification/silification of modulated alginate hydrogels. ACS Sustainable Chemistry & Engineering, 3(11), 2694–2703.

    CAS  Google Scholar 

  20. Dutta, N., Raj, D., Biswas, N., Mallick, M., & Omesh, S. (2017). Nanoparticle assisted activity optimization and characterization of a bacterial phytase immobilized on single layer graphene oxide. Biocatalysis and Agricultural Biotechnology, 9, 240–247.

    Google Scholar 

  21. Cho, E. A., Kim, E. J., & Pan, J. G. (2011). Adsorption immobilization of Escherichia coli phytase on probiotic Bacillus polyfermenticus spores. Enzyme and Microbial Technology, 49(1), 66–71.

    CAS  PubMed  Google Scholar 

  22. Tirunagari, H., Basetty, S., Rode, H. B., & Fadnavis, N. W. (2018). Crosslinked enzyme aggregates (CLEA) of phytase with soymilk proteins. Journal of Biotechnology, 282, 67–69.

    CAS  PubMed  Google Scholar 

  23. Yewle, J. N., Wei, Y. N., Puleo, D. A., Daunert, S., & Bachas, L. G. (2012). Oriented immobilization of proteins on hydroxyapatite surface using bifunctional bisphosphonates as linkers. Biomacromolecules., 13(6), 1742–1749.

    CAS  PubMed  Google Scholar 

  24. Qi, M. L., He, K., Huang, Z. N., Shahbazian-Yassar, R., Xiao, G. Y., Lu, Y. P., & Shokuhfar, T. (2017). Hydroxyapatite fibers: a review of synthesis methods. Jom., 69, 1354–1360.

    CAS  Google Scholar 

  25. Cipolatti, E., Silva, M., Klein, M., Feddern, V., Feltes, M., Oliveira, J., Ninow, J., & de Oliveira, D. (2014). Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic, 99, 56–67.

    CAS  Google Scholar 

  26. Farinas, C., Reis, P., Ferraz, H., Salim, V., & Alves, T. (2007). Adsorption of myoglobin onto hydroxyapatite modified with metal ions. Adsorption Science and Technology, 25(10), 717–727.

    CAS  Google Scholar 

  27. Kollath, V., Van den Broeck, F., Feher, K., Martins, J., Luyten, J., Traina, K., Mullens, S., & Cloots, R. (2015). A modular approach to study protein adsorption on surface modified hydroxyapatite. Chemistry—a European Journal, 21(29), 10497–10505.

    Google Scholar 

  28. Lee, W. H., Loo, C. Y., Van, K. L., Zavgorodniy, A. V., & Rohanizadeh, R. (2012). Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments. Journal of the Royal Society, Interface, 9(70), 918–927.

    CAS  PubMed  Google Scholar 

  29. Coutinho, T. C., Rojas, M. J., Tardioli, P. W., Paris, E. C., & Farinas, C. S. (2018). Nanoimmobilization of beta-glucosidase onto hydroxyapatite. International Journal of Biological Macromolecules, 119, 1042–1051.

    CAS  PubMed  Google Scholar 

  30. Xie, W., & Zang, X. (2017). Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-gamma-Fe2O3 nanoparticles: a magnetic biocatalyst for interesterification of soybean oil. Food Chemistry, 227, 397–403.

    CAS  PubMed  Google Scholar 

  31. Ivic, J., Dimitrijevic, A., Milosavic, N., Bezbradica, D., Drakulic, B., Jankulovic, M., Pavlovic, M., Rogniaux, H., & Velickovic, D. (2016). Assessment of the interacting mechanism between Candida rugosa lipases and hydroxyapatite and identification of the hydroxyapatite-binding sequence through proteomics and molecular modelling. RSC Advances, 6(41), 34818–34824.

    CAS  Google Scholar 

  32. Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    CAS  PubMed  Google Scholar 

  33. Harland, B. F., & Harland, J. (1980). Fermentative reduction of phytate in rye, white, and whole wheat breads. Cereal Chemistry, 57, 226–229.

    CAS  Google Scholar 

  34. Taussky, H. H., & Shorr, E. (1953). A microcolorimetric method for the determination of inorganic phosphorus. The Journal of Biological Chemistry, 202, 675–685.

    CAS  PubMed  Google Scholar 

  35. Tardioli, P. W., Zanin, G. M., & de Moraes, F. F. (2006). Characterization of thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme and Microbial Technology, 39(6), 1270–1278.

    CAS  Google Scholar 

  36. Sadana, A., & Henley, J. P. (1987). Single-step unimolecular non-1st-order enzyme deactivation kinetics. Biotechnology and Bioengineering, 30(6), 717–723.

    CAS  PubMed  Google Scholar 

  37. Rodriguez, Y. E., Laitano, M. V., Pereira, N. A., Lopez-Zavala, A. A., Haran, N. S., & Fernandez-Gimenez, A. V. (2018). Exogenous enzymes in aquaculture: alginate and alginate-bentonite microcapsules for the intestinal delivery of shrimp proteases to Nile tilapia. Aquaculture., 490, 35–43.

    CAS  Google Scholar 

  38. Moriarty, D. J. (1973). Physiology of digestion of blue-green-algae in cichlid fish, tilapia-nilotica. Journal of Zoology, 171, 25–39.

    CAS  Google Scholar 

  39. Oakley, A. J. (2010). The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. Biochemical and Biophysical Research Communications, 397(4), 745–749.

    CAS  PubMed  Google Scholar 

  40. Kostrewa, D., Leitch, F. G., Darcy, A., Broger, C., Mitchell, D., & vanLoon, A. (1997). Crystal structure of phytase from Aspergillus ficuum at 2.5 angstrom resolution. Nature Structural Biology, 4(3), 185–190.

    CAS  PubMed  Google Scholar 

  41. Vandenberg, G. W., Scott, S. L., Sarker, P. K., Dallaire, V., & de la Noue, J. (2011). Encapsulation of microbial phytase: Effects on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 169(3-4), 230–243.

    CAS  Google Scholar 

  42. Wu, C., Huang, S., Tseng, T., Rao, Q., & Lin, H. (2010). FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. Journal of Molecular Structure, 979(1-3), 72–76.

    CAS  Google Scholar 

  43. Kumar, S., Sharma, J. G., Maji, S., & Malhotra, B. D. (2016). A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Advances, 6, 10.

    Google Scholar 

  44. Swain, S. K., & Sarkar, D. (2013). Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Applied Surface Science, 286, 99–103.

    CAS  Google Scholar 

  45. Rehman, I., & Bonfield, W. (1997). Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science. Materials in Medicine, 8(1), 1–4.

    CAS  PubMed  Google Scholar 

  46. Cipreste, M. F., Gonzalez, I., Martins, T. M. D., Goes, A. M., Macedo, W. A. D., & de Sousa, E. M. B. (2016). Attaching folic acid on hydroxyapatite nanorod surfaces: an investigation of the HA-FA interaction. RSC Advances, 6, 11.

    Google Scholar 

  47. Kojima, S., Nagata, F., Kugimiya, S., & Kato, K. (2018). Synthesis of peptide-containing calcium phosphate nanoparticles exhibiting highly selective adsorption of various proteins. Applied Surface Science, 458, 438–445.

    CAS  Google Scholar 

  48. Agrawal, R., Verma, A., & Satlewal, A. (2016). Application of nanoparticle-immobilized thermostable beta-glucosidase for improving the sugarcane juice properties. Innovative Food Science & Emerging Technologies, 33, 472–482.

    CAS  Google Scholar 

  49. Ullah, A. H. J., & Gibson, D. M. (1987). Extracellular phytase (ec 3.1.3.8) from aspergillus-ficuum nrrl 3135 - purification and characterization. Preparative Biochemistry, 17, 63–91.

    CAS  PubMed  Google Scholar 

  50. Rao, D., Rao, K. V., Reddy, T. P., & Reddy, V. D. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Critical Reviews in Biotechnology, 29(2), 182–198.

    CAS  PubMed  Google Scholar 

  51. Soni, S. K., Magdum, A., & Khire, J. M. (2010). Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World Journal of Microbiology and Biotechnology, 26(11), 2009–2018.

    CAS  PubMed  Google Scholar 

  52. Dutta, N., Mukhopadhyay, A., Dasgupta, A. K., & Chakrabarti, K. (2014). Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles. Bioresource Technology, 153, 269–277.

    CAS  PubMed  Google Scholar 

  53. Mukhopadhyay, A., Dasgupta, A., Chattopadhyay, D., & Chakrabarti, K. (2012). Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. Bioresource Technology, 116, 348–354.

    CAS  PubMed  Google Scholar 

  54. Lagazzo, A., Barberis, F., Carbone, C., Ramis, G., & Finocchio, E. (2017). Molecular level interactions in brushite-aminoacids composites. Materials Science & Engineering, C: Materials for Biological Applications, 70, 721–727.

    CAS  PubMed  Google Scholar 

  55. Ivic, J., Velickovic, D., Dimitrijevic, A., Bezbradica, D., Dragacevic, V., Jankulovic, M., & Milosavic, N. (2016). Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Journal of the Science of Food and Agriculture, 96(12), 4281–4287.

    Google Scholar 

  56. Dersjant-Li, Y., Awati, A., Schulze, H., & Partridge, G. (2015). Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878–896.

    CAS  PubMed  Google Scholar 

  57. Randolph, T. W., Skerker, P. S., Blanch, H. W., Prausnitz, J. M., & Clark, D. S. (1987). Effect of enzyme and substrate conformation on enzymatic-activity in a supercriticial fluid - kinetic and electron-spin-resonance studies. Abstracts of Papers of the American Chemical Society, 194, 24.

    Google Scholar 

  58. Ferri, M., Campisi, S., Scavini, M., Evangelisti, C., Carniti, P., & Gervasini, A. (2019). In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Applied Surface Science, 475, 397–409.

    CAS  Google Scholar 

  59. Ullah, A. H. J., Sethumadhavan, K., & Mullaney, E. J. (2008). Unfolding and refolding of Aspergillus niger PhyB phytase: role of disulfide bridges. Journal of Agricultural and Food Chemistry, 56(17), 8179–8183.

    CAS  PubMed  Google Scholar 

  60. Hardy, R. W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770–776.

    CAS  Google Scholar 

  61. Celem, E. B., & Onal, S. (2009). Immobilization of phytase on epoxy-activated Sepabead EC-EP for the hydrolysis of soymilk phytate. Journal of Molecular Catalysis B: Enzymatic, 61(3-4), 150–156.

    CAS  Google Scholar 

Download references

Funding

Embrapa, CNPq (Process 401182/2014-2), CAPES, and FAPESP (Process 2016/10636-8) (all from Brazil) provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane S. Farinas.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, T.C., Tardioli, P.W. & Farinas, C.S. Phytase Immobilization on Hydroxyapatite Nanoparticles Improves Its Properties for Use in Animal Feed. Appl Biochem Biotechnol 190, 270–292 (2020). https://doi.org/10.1007/s12010-019-03116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03116-9

Keywords