Skip to main content
Log in

Definition of Liquid and Powder Cellulase Formulations Using Domestic Wastewater in Bubble Column Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Raw domestic wastewater was used as a culture medium for cellulase production in a bubble column reactor (6.2 UFP/mL, 64.6 U/L h) using the strain Trichoderma harzianum TRIC03-LPBII. Cellulases presented optimum pH and temperature between 4 and 5 and 50 and 70 °C, respectively. Enzymatic extract was concentrated through ultrafiltration and then a cellulolytic formulation was prepared with the addition of sorbitol (50% w/v) and benzoic acid (0.05% w/v). High cellulase stability of around 100% was reached after 30 days at 4 °C. The concentrated extract was also dried in a spray-dryer with the addition of maltodextrin at 20% (w/v), resulting in powder enzymatic formulation with 85% stability after 60 days. With these characteristics, the liquid and powder cellulase products have potential to be used in different industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bishof, R. H., Ramoni, J., & Seiboth, B. (2016). Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 15(1), 1–13.

    Article  Google Scholar 

  2. Alam, M. Z., Muyibi, S. A., & Wahid, R. (2008). Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technology, 99(11), 4709–4716.

    Article  CAS  PubMed  Google Scholar 

  3. Libardi, N., Soccol, C. R., Góes-Neto, A., de Oliveira, J., & Vandenberghe, L. P. d. S. (2017). Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochemistry, 57, 190–199.

    Article  CAS  Google Scholar 

  4. Libardi, N., Soccol, C. R., Carvalho, J. C., & Vandenberghe, L. P. S. (2019). Simultaneous cellulase production using domestic wastewater and bioprocess effluent treatment - a biorefinery approach. Bioresource Technology, 276, 42–50.

    Article  CAS  PubMed  Google Scholar 

  5. Shibuya, H., Magara, K., & Nojiri, M. (2015). Cellulase production by Trichoderma reesei in fed-batch cultivation on soda-anthraquinone pulp of the Japanese cedar. Bulletin of FFPRI, 14(1), 29–35.

    CAS  Google Scholar 

  6. Esterbauer, H., Steiner, W., Labudova, I., Hermann, A., & Hayn, M. (1991). Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology, 36(1), 51–65.

    Article  CAS  Google Scholar 

  7. Chaplin, M. F., & Bucke, C. (1990). Enzyme Technology. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Himmel, M. E., Abbas, C. A., Baker, J. O., Bayer, E. A., Bomble, Y. J., Brunecky, R., Chen, X., Felby, C., Jeoh, T., Kumar, R., McCleary, B. V., Pletschke, B. I., Tucker, M. P., Wyman, C. E., & Decker, S. R. (2017). Undefined cellulase formulations hinder scientific reproducibility. Biotechnology for Biofuels, 10(283), 1–4.

    Google Scholar 

  9. Singhania, R., Adsul, M., Pandey, A., & Patel, A. (2017). In A. Pandey, S. Negi, & C. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering Production, Isolation and Purification of Industrial Products: Cellulases (pp. 73–97). Amsterdam: Elsevier.

    Google Scholar 

  10. Becker, T., Park, G., & Gaertner, A. L. (1997). In J. H. Van Ee, O. Misset, & E. Baas (Eds.), Enzymes in Detergency: Formulation of Detergent Enzymes (pp. 299–325). New York: Marcel Dekker.

    Google Scholar 

  11. De Paz, R., Barnett, C. C., Dale, D. A., Carpenter, J. F., Gaertner, A. L., & Randolph, T. W. (2000). The excluding effects of sucrose on a protein chemical degradation pathway: methionine oxidation in subtilisin. Archives of Biochemistry Biophysics, 384, 123–132.

    Article  Google Scholar 

  12. Belghith, H., Ellouz Chaabouni, S., & Gargouri, A. (2001). Stabilization of Penicillium occitanis cellulases by spray drying in presence of maltodextrin. Enzyme and Microbial Technology, 28(2–3), 253–258.

    Article  CAS  PubMed  Google Scholar 

  13. Selivanov, A. S. (2005). Stabilization of cellulases using spray drying. Engineering in Life Sciences, 5(1), 78–80.

    Article  CAS  Google Scholar 

  14. Ferreira, S., Malacrida, C. R., & Telis, V. R. N. (2016). Influence of emulsification methods and use of colloidal silicon dioxide on the microencapsulation by spray drying of turmeric oleoresin in gelatin-starch matrices. Canadian Journal of Chemical Engineering, 94(11), 2210–2218.

    Article  CAS  Google Scholar 

  15. Samantha, S. C., Bruna, A. S. M., Adriana, R. M., Fabio, B., Sandro, A. R., & Aline, R. C. A. (2015). Drying by spray drying in the food industry: micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462–470.

    Article  Google Scholar 

  16. Anvisa. (1988). Available from: http://portal.anvisa.gov.br/documents/33916/391619/Resolucao_04_1988.pdf/7311a4d9-d5db-44d6-adbd-c7e6891d079d. Acessed January 10, 2018.

  17. ICH. (1995). Available from: https://www.ich.org/products/guidelines/quality/quality-single/article/stability-testing-of-biotechnologicalbiological-products.html. Acessed January 10, 2018.

  18. Mandels, M., & Reese, E. T. (1957). Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. Journal of bacteriology, 73(2), 269–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camassola, M., & Dillon, A. J. P. (2012). Cellulase determination: modification to make the filter paper assay easy, practical and efficient. Open Access Scientific Reports, 1(125), 2–5.

    Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  21. Busto, M., & Ortega, N. (1996). Location, kinetics and stability of cellulases induced in Trichoderma reesei cultures. Bioresource Technology, 57(2), 187–192.

    Article  CAS  Google Scholar 

  22. Chen, H., Chang, H., Fan, C., Chen, W., Lee, M. (2011). Screening, isolation and characterization of cellulose biotransformation bacteria from specific soils. 2011 International Conference on Environment and Industrial Innovation IPCBEE, 12, 216–220.

  23. Tiwari, P., Misra, B. N., & Sangwan, N. S. (2013). β-Glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed Research International, 2013, 1–10.

    Article  Google Scholar 

  24. Sørensen, A., Lübeck, M., Lübeck, P. S., & Ahring, B. K. (2013). Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules, 3(3), 612–631.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yun, S. I., Jeong, C. S., Chung, D. K., & Choi, H. S. (2001). Purification and some properties of a beta-glucosidase from Trichoderma harzianum type C-4. Bioscience, biotechnology, and biochemistry, 65(9), 2028–2032.

    Article  CAS  PubMed  Google Scholar 

  26. Chandra, M., Kalra, A., Sangwan, A., & Sangwan, R. (2013). Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride. Molecular Biotechnology, 53(3), 289–299.

    Article  CAS  PubMed  Google Scholar 

  27. Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F., Ferreira, N. L., & Lopes Ferreira, N. (2010). Comparative kinetic analysis of two fungal beta-glucosidases. Biotechnology for biofuels, 3(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen, H., Hayn, M., & Esterbauer, H. (1992). Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta, 22, 54–60.

    Article  Google Scholar 

  29. Dekker, R. (1986). Kinetic, inhibition, and stability properties of a commercial beta-D-glucosidase (cellobiase) preparation from Aspergillus niger and its suitability in the hydrolysis of lignocellulose. Biotechnology and Bioengineering, 28(9), 1438–1442.

    Article  CAS  PubMed  Google Scholar 

  30. Whitaker, J. R. (1994). Principles of enzymology for the food sciences. New York: CRC Press Book.

    Google Scholar 

  31. Noel, M., & Combes, D. (2003). Rhizomucor miehei lipase: differential scanning calorimetry and pressure/temperature stability studies in presence of soluble additives. Enzyme and Microbial Technology, 33(2-3), 299–308.

    Article  CAS  Google Scholar 

  32. Tiwari, A., & Bhat, R. (2006). Stabilization of yeast hexokinase A by polyol osmolytes: correlation with the physicochemical properties of aqueous solutions. Biophysical Chemistry, 124(2), 90–99.

    Article  CAS  PubMed  Google Scholar 

  33. Yadav, J. K., Prakash, V. (2011). Stabilization of α-amylase, the key enzyme in carbohydrates properties alterations at low ph. International Journal of Food Properties, 1182–1196.

    Article  CAS  Google Scholar 

  34. Pazhang, M., Mehrnejad, F., Pazhang, Y., Falahati, H., & Chaparzadeh, N. (2016). Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnology and Applied Biochemistry, 63(2), 206–213.

    Article  CAS  PubMed  Google Scholar 

  35. Lemos, J. L. S., Bon, E. P. S., Santana, M. D. F. E., & Pereira, N. (2000). Thermal stability of xylanases produced by Aspergillus awamori. Brazilian Journal of Microbiology, 31, 206–211.

    Article  CAS  Google Scholar 

  36. Amfep. (2018). Available from: amfep.org. Acessed January 2, 2018.

  37. Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.

    Article  CAS  Google Scholar 

  38. Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6(4), 420–428.

    Article  CAS  Google Scholar 

  39. Chiou, D., & Langrish, T. A. G. (2007). Crystallization of amorphous components in spray-dried powders. Drying Technology, 25(9), 1423–1431.

    Article  Google Scholar 

Download references

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) (Finance code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brasil (CNPq), and internal funds of Federal University of Paraná.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Porto de Souza Vandenberghe.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libardi, N., Soccol, C.R., Tanobe, V.O.A. et al. Definition of Liquid and Powder Cellulase Formulations Using Domestic Wastewater in Bubble Column Reactor. Appl Biochem Biotechnol 190, 113–128 (2020). https://doi.org/10.1007/s12010-019-03075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03075-1

Keywords

Navigation