Skip to main content
Log in

Inhibition of Human Serum Paraoxonase-I with Antimycotic Drugs: In Vitro and In Silico Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Drugs show their pharmacological effects by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug design for numerous different sorts of diseases, i.e., cardiovascular, cancer, metabolic, and neurological. The purpose of the current study was to contribute to the growing drug discovery and development area by analyzing functions and drug interactions of paraoxonase-I. For this purpose, the PON1 enzyme was purified from fresh human serum using simple, rapid, and different chromatographic techniques. Then, it was tested for the inhibitory effects of some antimycotic drugs on the PON1. Also, molecular docking analyses of each drug were carried out to determine the binding interactions on the active site of the PON1 enzyme. It was identified that the purified enzyme had the specific activity of 3880.83 EU/mg proteins and the molecular weight of 43 kDa by SDS-PAGE. IC50 values for PON1 were in the range of 0.037 ± 0.001–5.728 ± 0.043 mM. Ki constants for caspofungin acetate, amphotericin B, anidulafungin, and fluconazole were determined to be 0.0105 ± 0.0015 mM, 0.3206 ± 0.0196 mM, 0.1674 ± 0.0233 mM, and 2.5464 ± 0.1655 mM, respectively. The inhibition mechanism of amphotericin B was non-competitive, whereas anidulafungin was mixed type, and the others were competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BSA:

Bovine serum albumin

EU:

Enzyme unit

GF:

Gel filtration

GSH:

Glutathione

GST:

Glutathione-S-transferase

HDL:

High-density lipoprotein

IEX:

Ion exchange chromatography

MW:

Molecular weight

OPs:

Organophosphorus insecticides

PON:

Paraoxonase

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEC:

Size exclusion chromatography

SP:

Standard precision

ΔG Coulomb:

Coulombic energy

ΔG vdW:

van der Waals energy

References

  1. Latifi, A. M., Karami, A., & Khodi, S. (2015). Efficient surface display of diisopropylfluorophosphatase (DFPase) in E. coli for biodegradation of toxic organophosphorus compounds (DFP and Cp). Applied Biochemistry and Biotechnology, 177(3), 624–636. https://doi.org/10.1007/s12010-015-1766-0.

    Article  CAS  PubMed  Google Scholar 

  2. Costa, L. G., Cole, T. B., Vitalone, A., & Furlong, C. E. (2005). Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clinica Chimica Acta, 352(1-2), 37–47. https://doi.org/10.1016/j.cccn.2004.09.019.

    Article  CAS  Google Scholar 

  3. Klaassen, C. D. & Amdur, M. O. (2013) Casarett and Doull’s toxicology: the basic science of poisons. ed. McGraw-Hill New York.

    Google Scholar 

  4. Costa, L. G. (2017). Organophosphorus compounds at 80: some old and new issues. Toxicological Sciences, 162(1), 24–35. https://doi.org/10.1093/toxsci/kfx266.

    Article  CAS  PubMed Central  Google Scholar 

  5. Lee, B. W., London, L., Paulauskis, J., Myers, J., & Christiani, D. C. (2003). Association between human paraoxonase gene polymorphism and chronic symptoms in pesticide-exposed workers. Journal of Occupational and Environmental Medicine, 45(2), 118–122. https://doi.org/10.1097/01.jom.0000052953.59271.e1.

    Article  CAS  PubMed  Google Scholar 

  6. Dardiotis, E., Siokas, V., Sokratous, M., Tsouris, Z., Michalopoulou, A., Andravizou, A., Dastamani, M., Ralli, S., Vinceti, M., & Tsatsakis, A. (2018). Genetic polymorphisms in amyotrophic lateral sclerosis: evidence for implication in detoxification pathways of environmental toxicants. Environment International, 116, 122–135. https://doi.org/10.1016/j.envint.2018.04.008.

    Article  CAS  PubMed  Google Scholar 

  7. Hernández, A. F., Gil, F., Lacasaña, M., Rodríguez-Barranco, M., Tsatsakis, A. M., Requena, M., Parrón, T., & Alarcón, R. (2013). Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food and Chemical Toxicology, 61144–61151. https://doi.org/10.1016/j.fct.2013.05.012.

    Article  PubMed  Google Scholar 

  8. Dong, A. N., Pan, Y., Palanisamy, U. D., Yiap, B. C., Ahemad, N., & Ong, C. E. (2018). Site-directed mutagenesis of cytochrome P450 2D6 and 2C19 enzymes: expression and spectral characterization of naturally occurring allelic variants. Applied Biochemistry and Biotechnology, 186(1), 132–144. https://doi.org/10.1007/s12010-018-2728-0.

    Article  CAS  PubMed  Google Scholar 

  9. Samra, Z. Q., Shabir, S., Rehmat, Z., Zaman, M., Nazir, A., Dar, N., & Athar, M. A. (2010). Synthesis of cholesterol-conjugated magnetic nanoparticles for purification of human paraoxonase 1. Applied Biochemistry and Biotechnology, 162(3), 671–686. https://doi.org/10.1007/s12010-009-8840-4.

    Article  CAS  PubMed  Google Scholar 

  10. Geldmacher-von Mallinckrodt, M., & Diepgen, T. L. (1988). The human serum paraoxonase—polymorphism and specificity. Toxicological and Environmental Chemistry, 18(2-3), 79–196. https://doi.org/10.1080/02772248809357310.

    Article  CAS  Google Scholar 

  11. Rochu, D., Chabriere, E., & Masson, P. (2007). Human paraoxonase: a promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology, 233(1-3), 47–59. https://doi.org/10.1016/j.tox.2006.08.037.

    Article  CAS  PubMed  Google Scholar 

  12. Mackness, M. I., Mackness, B., Durrington, P. N., Connelly, P. W., & Hegele, R. A. (1996). Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Current Opinion in Lipidology, 7(2), 69–76 8743898.

    Article  CAS  PubMed  Google Scholar 

  13. Demir, Y., & Beydemir, Ş. (2015). Purification, refolding, and characterization of recombinant human paraoxonase-1. Turkish Journal of Chemistry, 39(4), 764–776. https://doi.org/10.3906/kim-1501-51.

    Article  CAS  Google Scholar 

  14. Li, W. F., Furlong, C. E., & Costa, L. G. (1995). Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicology Letters, 76(3), 219–226. https://doi.org/10.1016/0378-4274(95)80006-Y.

    Article  CAS  PubMed  Google Scholar 

  15. Josse, D., Broomfield, C. A., Cerasoli, D., Kirby, S., Nicholson, J., Bahnson, B. & Lenz, D. E. (2002). Engineering of HuPON1 for a use as a catalytic bioscavenger in organophosphate poisoning. US Army Medical Defense Bioscience Review.

  16. Yeung, D. T., Lenz, D. E. & Cerasoli, D. M. (2008), The paraoxonases: their role in disease development and xenobiotic metabolism (pp. 151–170). Springer.

  17. Tripathy, R. K., Aggarwal, G., Bajaj, P., Kathuria, D., Bharatam, P. V., & Pande, A. H. (2017). Towards understanding the catalytic mechanism of human paraoxonase 1: experimental and in silico mutagenesis studies. Applied Biochemistry and Biotechnology, 182(4), 1642–1662. https://doi.org/10.1007/s12010-017-2424-5.

    Article  CAS  PubMed  Google Scholar 

  18. Nicholls, S. J., & Hazen, S. L. (2005). Myeloperoxidase and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(6), 1102–1111. https://doi.org/10.1161/01.ATV.0000163262.83456.6d.

    Article  CAS  PubMed  Google Scholar 

  19. Soran, H., Younis, N. N., Charlton-Menys, V., & Durrington, P. (2009). Variation in paraoxonase-1 activity and atherosclerosis. Current Opinion in Lipidology, 20(4), 265–274. https://doi.org/10.1097/MOL.0b013e32832ec141.

    Article  CAS  PubMed  Google Scholar 

  20. BinDal, U. D., Saxena, R., Siddiqui, M. H., & Sharma, D. (2016). Correlation of paraoxonase status with disease activity score and systemic inflammation in rheumatoid arthritic patients. Journal of Clinical and Diagnostic Research: JCDR, 10(3), BC01. https://doi.org/10.7860/JCDR/2016/17767.7345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, L., Qin, S., Dang, L., Song, G., Yao, S., Yang, N., & Li, Y. (2014). Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoprotein. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841(12), 1709–1715. https://doi.org/10.1016/j.bbalip.2014.09.008.

    Article  CAS  Google Scholar 

  22. Prathibha, K., Nusrath, A., & Rajeshwari, A. (2016). Evaluation of serum paraoxonase level and dyslipidemia in psoriasis. International Journal of Research in Medical Sciences, 4(9), 4001–4004. https://doi.org/10.18203/2320-6012.ijrms20162923.

    Article  Google Scholar 

  23. Deakin, S. P., & James, R. W. (2004). Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clinical Science, 107(5), 435–447. https://doi.org/10.1042/CS20040187.

    Article  CAS  PubMed  Google Scholar 

  24. Dullaart, R. P. F., De Vries, R., Sluiter, W. J., & Voorbij, H. A. M. (2009). High plasma C-reactive protein (CRP) is related to low paraoxonase-I (PON-I) activity independently of high leptin and low adiponectin in type 2 diabetes mellitus. Clinical Endocrinology, 70(2), 221–226. https://doi.org/10.1111/j.1365-2265.2008.03306.x.

    Article  CAS  PubMed  Google Scholar 

  25. Fülöp, P., Harangi, M., Seres, I., & Paragh, G. (2016). Paraoxonase-1 and adipokines: potential links between obesity and atherosclerosis. Chemico-Biological Interactions, 259, 388–393.

    Article  PubMed  Google Scholar 

  26. Kofla, G., & Ruhnke, M. (2011). Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis-review of the literature. European Journal of Medical Research, 16(4), 159. https://doi.org/10.1186/2047-783X-16-4-159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoang, A. (2001). Caspofungin acetate: an antifungal agent. American Journal of Health-System Pharmacy, 58(13), 1206–1214. https://doi.org/10.1093/ajhp/58.13.1206.

    Article  CAS  PubMed  Google Scholar 

  28. Baginski, M., Resat, H., & McCammon, J. A. (1997). Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation. Molecular Pharmacology, 52(4), 560–570. https://doi.org/10.1124/mol.52.4.560.

    Article  CAS  PubMed  Google Scholar 

  29. Hartsel, S., & Bolard, J. (1996). Amphotericin B: new life for an old drug. Trends in Pharmacological Sciences, 17(12), 445–449. https://doi.org/10.1016/S0165-6147(96)01012-7.

    Article  CAS  PubMed  Google Scholar 

  30. Baran, R., Hay, R. J., & Garduno, J. I. (2008). Review of antifungal therapy and the severity index for assessing onychomycosis: part I. Journal of Dermatological Treatment, 19(2), 72–81. https://doi.org/10.1080/09546630701243418.

    Article  CAS  Google Scholar 

  31. Debruyne, D., & Ryckelynck, J.-P. (1993). Clinical pharmacokinetics of fluconazole. Clinical Pharmacokinetics, 24(1), 10–27. https://doi.org/10.2165/00003088-199324010-00002.

    Article  CAS  PubMed  Google Scholar 

  32. Copeland, R. A., Harpel, M. R., & Tummino, P. J. (2007). Targeting enzyme inhibitors in drug discovery. Expert Opinion on Therapeutic Targets, 11(7), 967–978. https://doi.org/10.1517/14728222.11.7.967.

    Article  CAS  PubMed  Google Scholar 

  33. Furlong, C. E. (2008). The paraoxonases: their role in disease development and xenobiotic metabolism (pp. 3–31). Springer.

  34. Renault, F., Chabrière, E., Andrieu, J.-P., Dublet, B., Masson, P., & Rochu, D. (2006). Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. Journal of Chromatography B, 836(1-2), 15–21. https://doi.org/10.1016/j.jchromb.2006.03.029.

    Article  CAS  Google Scholar 

  35. Mackness, M. I., & Durrington, P. N. (1995). HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis, 115(2), 243–253. https://doi.org/10.1016/0021-9150(94)05524-M.

    Article  CAS  PubMed  Google Scholar 

  36. Türkeş, C., Söyüt, H., & Beydemir, Ş. (2016). In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. Environmental Toxicology and Pharmacology, 42, 252–257. https://doi.org/10.1016/j.etap.2015.11.024.

    Article  CAS  PubMed  Google Scholar 

  37. Sinan, S., Kockar, F., & Arslan, O. (2006). Novel purification strategy for human PON1 and inhibition of the activity by cephalosporin and aminoglikozide derived antibiotics. Biochimie, 88(5), 565–574. https://doi.org/10.1016/j.biochi.2005.12.004.

    Article  CAS  PubMed  Google Scholar 

  38. Ceylan, H., Demir, Y., & Beydemir, Ş. (2019). Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study. Protein and Peptide Letters, 26(5), 364–370. https://doi.org/10.2174/0929866526666190301115122.

    Article  CAS  PubMed  Google Scholar 

  39. Akbaba, Y., Türkeş, C., Polat, L., Söyüt, H., Şahin, E., Menzek, A., Göksu, S., & Beydemir, Ş. (2013). Synthesis and paroxonase activities of novel bromophenols. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(5), 1073–1079. https://doi.org/10.3109/14756366.2012.715287.

    Article  CAS  PubMed  Google Scholar 

  40. Alım, Z., Kılıç, D. & Demir, Y. (2018). Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies. Archives of Physiology and Biochemistry, 1–9. https://doi.org/10.1080/13813455.2018.1470646.

    Article  PubMed  Google Scholar 

  41. Işık, M., Demir, Y., Kırıcı, M., Demir, R., Şimşek, F., & Beydemir, Ş. (2015). Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs. Archives of Physiology and Biochemistry, 121(3), 97–102. https://doi.org/10.3109/13813455.2015.1026912.

    Article  CAS  PubMed  Google Scholar 

  42. Beydemir, Ş., & Demir, Y. (2017). Antiepileptic drugs: impacts on human serum paraoxonase-1. Journal of Biochemical and Molecular Toxicology, 31(6), e21889. https://doi.org/10.1002/jbt.21889.

    Article  CAS  Google Scholar 

  43. Caglayan, C., Demir, Y., Kucukler, S., Taslimi, P., Kandemir, F. M., & Gulçin, İ. (2019). The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: a biochemical approach. Journal of Food Biochemistry, 43(2), e12720. https://doi.org/10.1111/jfbc.12720.

    Article  CAS  PubMed  Google Scholar 

  44. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  45. Türkeş, C. Inhibition effects of phenolic compounds on human serum paraoxonase-1 enzyme. Journal of the Institute of Science and Technology, 9(2), 1013–1022. https://doi.org/10.21597/jist.491054.

  46. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680. https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  47. Turkes, C., Soyut, H. & Beydemir, S. (2013). Inhibition effects of gemcitabine hydrochloride, acyclovir, and 5-fluorouracil on human serum paraoxonase-1 (hPON1): in vitro. Open Biochemistry Journal, 110–15.

  48. Türkeş, C., Demir, Y. & Beydemir, Ş. (2019). Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity. Applied Biochemistry and Biotechnology, 1–12. https://doi.org/10.1007/s12010-019-03009-x.

    Article  PubMed  Google Scholar 

  49. Beydemir, Ş., Türkeş, C. & Yalçın, A. (2019). Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug and Chemical Toxicology, 1–10. https://doi.org/10.1080/01480545.2019.1620266.

  50. Türkeş, C., Söyüt, H., & Beydemir, Ş. (2014). Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacological Reports, 66(1), 74–80. https://doi.org/10.1016/j.pharep.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  51. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666. https://doi.org/10.1021/ja01318a036.

    Article  CAS  Google Scholar 

  52. Taslimi, P., Kandemir, F. M., Demir, Y., İleritürk, M., Temel, Y., Caglayan, C. & Gulçin, İ. (2019). The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: pharmacological evaluation of some metabolic enzyme activities. Journal of Biochemical and Molecular Toxicology, e22313. https://doi.org/10.1002/jbt.22313.

  53. Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6-7), 591–604. https://doi.org/10.1007/s10822-010-9349-1.

    Article  CAS  PubMed  Google Scholar 

  54. Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z.

    Article  CAS  PubMed  Google Scholar 

  55. Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., & Knight, J. L. (2015). OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864.

    Article  CAS  PubMed  Google Scholar 

  56. Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389. https://doi.org/10.1021/ci800324m.

    Article  CAS  PubMed  Google Scholar 

  57. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8.

    Article  CAS  PubMed  Google Scholar 

  58. Türkeş, C. (2019). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein and Peptide Letters, 26(6). https://doi.org/10.2174/0929866526666190226162225.

    Article  Google Scholar 

  59. Türkeş, C., Arslan, M., Demir, Y., Çoçaj, L., Nixha, A. R. & Beydemir, Ş. (2019). Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry, 103004. https://doi.org/10.1016/j.bioorg.2019.103004.

    Article  PubMed  Google Scholar 

  60. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., & Perry, J. K. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430.

    Article  CAS  PubMed  Google Scholar 

  61. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s.

    Article  CAS  PubMed  Google Scholar 

  62. Van Den Driessche, G., & Fourches, D. (2017). Adverse drug reactions triggered by the common HLA-B* 57: 01 variant: a molecular docking study. Journal of Cheminformatics, 9(1), 13. https://doi.org/10.1186/s13321-017-0202-6.

    Article  CAS  Google Scholar 

  63. Nebbia, C. (2001). Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. The Veterinary Journal, 161(3), 238–252. https://doi.org/10.1053/tvjl.2000.0561.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, H., Zhao, T., & Liu, J. (2018). Role of paraoxonase 1 activity and oxidative/antioxidative stress markers in patients with acute cerebral infarction. Clinical Laboratory, 64(6), 1049–1053. https://doi.org/10.7754/Clin.Lab.2018.180201.

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, P., More, S. V., & Mogarekar, M. R. (2018). Serum paraoxonase 1 (PON 1) arylesterase & lactonase activity in chronic obstructive pulmonary disease (COPD). International Journal of Scientific Research, 6(7).

  66. Şentürk, M., Ekinci, D., Alıcı, H. A., & Beydemir, Ş. (2011). Paraoxonase-1, an organophosphate detoxifier and cardioprotective enzyme, is inhibited by anesthetics: an in vitro and in vivo insight. Pesticide Biochemistry and Physiology, 101(3), 206–211. https://doi.org/10.1016/j.pestbp.2011.09.007.

    Article  CAS  Google Scholar 

  67. Cebeci, B., Alim, Z., & Beydemir, Ş. (2014). In vitro effects of pesticide exposure on the activity of the paraoxonase-1 enzyme from sheep liver microsomes. Turkish Journal of Chemistry, 38(3), 512–520. https://doi.org/10.3906/kim-1308-20.

    Article  CAS  Google Scholar 

  68. Dilek, E. B., Küfrevioğlu, Ö. İ., & Beydemir, Ş. (2013). Impacts of some antibiotics on human serum paraoxonase 1 activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(4), 758–764. https://doi.org/10.3109/14756366.2012.681653.

    Article  CAS  PubMed  Google Scholar 

  69. Alim, Z., Kilic, D., Koksal, Z., Beydemir, S., & Ozdemir, H. (2017). Assessment of the inhibitory effects and molecular docking of some sulfonamides on human serum paraoxonase 1. Journal of Biochemical and Molecular Toxicology, 31(10), e21950. https://doi.org/10.1002/jbt.21950.

    Article  CAS  Google Scholar 

  70. Yılmaz, A., & Dilek, E. (2019). Antibiotics used in patients after surgery and effects of human serum paraoxonase-I (PON1) enzyme activity. Protein and Peptide Letters, 26(3), 215–220. https://doi.org/10.2174/0929866526666190124144622.

    Article  CAS  PubMed  Google Scholar 

  71. Türkeş, C., Söyüt, H., & Beydemir, Ş. (2015). Human serum paraoxonase-1 (hPON1): in vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 622–628. https://doi.org/10.3109/14756366.2014.959511.

    Article  CAS  PubMed  Google Scholar 

  72. Ekinci, D., & Beydemir, Ş. (2009). Evaluation of the impacts of antibiotic drugs on PON 1; a major bioscavenger against cardiovascular diseases. European Journal of Pharmacology, 617(1-3), 84–89. https://doi.org/10.1016/j.ejphar.2009.06.048.

    Article  CAS  PubMed  Google Scholar 

  73. Ekinci, D., Şentürk, M., Beydemir, Ş., İrfan Küfrevioğlu, Ö., & Supuran, C. T. (2010). An alternative purification method for human serum paraoxonase 1 and its interactions with sulfonamides. Chemical Biology & Drug Design, 76(6), 552–558. https://doi.org/10.1111/j.1747-0285.2010.01036.x.

    Article  CAS  Google Scholar 

  74. İşgör, M. M., & Beydemir, Ş. (2010). Some cardiovascular therapeutics inhibit paraoxonase 1 (PON1) from human serum. European Journal of Pharmacology, 645(1-3), 135–142. https://doi.org/10.1016/j.ejphar.2010.07.030.

    Article  CAS  PubMed  Google Scholar 

  75. Alim, Z., & Beydemir, Ş. (2016). Some anticancer agents act on human serum paraoxonase-1 to reduce its activity. Chemical Biology & Drug Design, 88(2), 188–196. https://doi.org/10.1111/cbdd.12746.

    Article  CAS  Google Scholar 

  76. Pla, A., Rodrigo, L., Hernandez, A. F., Gil, F., & Lopez, O. (2007). Effect of metal ions and calcium on purified PON1 and PON3 from rat liver. Chemico-Biological Interactions, 167(1), 63–70. https://doi.org/10.1016/j.cbi.2007.01.006.

    Article  CAS  PubMed  Google Scholar 

  77. Jakubowski, H. (2000). Calcium-dependent human serum homocysteine thiolactone hydrolase A protective mechanism against protein N-homocysteinylation. The Journal of Biological Chemistry, 275(6), 3957–3962. https://doi.org/10.1074/jbc.275.6.3957.

    Article  CAS  PubMed  Google Scholar 

  78. Josse, D., Xie, W., Renault, F., Rochu, D., Schopfer, L. M., Masson, P., & Lockridge, O. (1999). Identification of residues essential for human paraoxonase (PON1) arylesterase/organophosphatase activities. Biochemistry (Mosc), 38(9), 2816–2825. https://doi.org/10.1021/bi982281h.

    Article  CAS  Google Scholar 

  79. Kuo, C.-L., & La Du, B. N. (1998). Calcium binding by human and rabbit serum paraoxonases: structural stability and enzymatic activity. Drug Metabolism and Disposition, 26(7), 653–660 9660847.

    CAS  PubMed  Google Scholar 

  80. Sorenson, R. C., Primo-Parmo, S. L., Kuo, C.-L., Adkins, S., Lockridge, O., & La Du, B. N. (1995). Reconsideration of the catalytic center and mechanism of mammalian paraoxonase/arylesterase. Proceedings of the National Academy of Sciences, 92(16), 7187–7191. https://doi.org/10.1073/pnas.92.16.7187.

    Article  CAS  Google Scholar 

  81. Bajaj, P., & Pande, A. H. (2014). Stabilization studies on bacterially produced human paraoxonase 1 for improving its shelf life. Applied Biochemistry and Biotechnology, 172(8), 3798–3809. https://doi.org/10.1007/s12010-014-0806-5.

    Article  CAS  PubMed  Google Scholar 

  82. Bhattacharyya, T., Nicholls, S. J., Topol, E. J., Zhang, R., Yang, X., Schmitt, D., Fu, X., Shao, M., Brennan, D. M., & Ellis, S. G. (2008). Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA, 299(11), 1265–1276. https://doi.org/10.1001/jama.299.11.1265.

    Article  CAS  PubMed  Google Scholar 

  83. Kennedy, D. J., Wilson Tang, W. H., Fan, Y., Wu, Y., Mann, S., Pepoy, M., & Hazen, S. L. (2017). Diminished antioxidant activity of high-density lipoprotein–associated proteins in chronic kidney disease. Journal of the American Heart Association, 2(2), e000104. https://doi.org/10.1161/JAHA.113.000104.

    Article  Google Scholar 

  84. Charles-Schoeman, C., Lee, Y. Y., Shahbazian, A., Gorn, A. H., FitzGerald, J., Ranganath, V. K., Taylor, M., Ragavendra, N., McMahon, M., & Elashoff, D. (2013). Association of paraoxonase 1 gene polymorphism and enzyme activity with carotid plaque in rheumatoid arthritis. Arthritis and Rheumatism, 65(11), 2765–2772. https://doi.org/10.1002/art.38118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hammadah, M., Kalogeropoulos, A. P., Georgiopoulou, V. V., Weber, M., Wu, Y., Hazen, S. L., Butler, J., & Tang, W. H. W. (2017). High-density lipoprotein-associated paraoxonase-1 activity for prediction of adverse outcomes in outpatients with chronic heart failure. European Journal of Heart Failure, 19(6), 748–755. https://doi.org/10.1002/ejhf.777.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Samet Karataş and Muhammed Kerem Türkeş for his kind help suggestions during the preparation of the manuscript.

Funding

This work was supported by the Research Fund of Erzincan Binali Yıldırım University (project number FBA-2017-501). The authors are grateful to Erzincan Binali Yıldırım University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cüneyt Türkeş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkeş, C., Beydemir, Ş. Inhibition of Human Serum Paraoxonase-I with Antimycotic Drugs: In Vitro and In Silico Studies. Appl Biochem Biotechnol 190, 252–269 (2020). https://doi.org/10.1007/s12010-019-03073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03073-3

Keywords

Navigation