Skip to main content
Log in

Efficient Production of 2,6-Difluorobenzamide by Recombinant Escherichia coli Expressing the Aurantimonas manganoxydans Nitrile Hydratase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2,6-Difluorobenzamide is an important intermediate with many applications in pesticide industries. Through screening a library of recombinant nitrile hydratases, the nitrile hydratase from Aurantimonas manganoxydans ATCC BAA-1229 was selected for production of 2,6-difluorobenzamide from 2,6-difluorobenzonitrile. Key parameters of the biocatalytic process, including temperature, pH, substrate loading, and substrate feeding mode, were optimized. Finally, 314 g/L of 2,6-difluorobenzamide was produced in a simple batch process within 11 h without formation of any by-product in an economical non-buffer system and similar result was obtained when scaled up to 30 L. This study constitutes the first report of 2,6-difluorobenzamide significant production using a recombinant Escherichia coli-based biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, L., Ou, X. M., Mao, C. H., Shang, J., Huang, R. Q., Bi, F. C., & Wang, Q. M. (2007). Synthesis and bioassay evaluation of 1-(4-substitutedideneaminooxymethyl)-phenyl-3-(2,6-difluorobenzoyl)ureas. Bioorganic & Medicinal Chemistry, 15, 3678–3683.

    Article  CAS  Google Scholar 

  2. Huff, R. K. (1979). Oxadiazindione derivatives useful as insecticides. US Patent 4,150,158.

  3. Parkins, A. W. (1996). Catalytic hydration of nitriles to amides. Platinum Metals Review, 40, 169–174.

    CAS  Google Scholar 

  4. Prasad, S., & Bhalla, T. C. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnology Advances, 28, 725–741.

    Article  CAS  PubMed  Google Scholar 

  5. Mauger, J., Nagasawa, T., & Yamada, H. (1989). Synthesis of various aromatic amide derivatives using nitrile hydratase of Rhodococcus rhodochrous J1. Tetrahedron, 45, 1347–1354.

    Article  CAS  Google Scholar 

  6. Tang, R., Shen, Y., Wang, M., Zhai, Y., & Gao, Q. (2017). Highly chemoselective and efficient production of 2,6-difluorobenzamide using Rhodococcus ruber CGMCC3090 resting cells. Journal of Bioscience and Bioengineering, 124, 641–646.

    Article  CAS  PubMed  Google Scholar 

  7. Gilligan, T., Yamada, H., & Nagasawa, T. (1993). Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Applied Microbiology and Biotechnology, 39, 720–725.

    Article  CAS  PubMed  Google Scholar 

  8. Nagasawa, T., Takeuchi, K., Nardi-Dei, V., Mihara, Y., & Yamada, H. (1991). Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Applied Microbiology and Biotechnology, 34, 783–788.

    Article  CAS  Google Scholar 

  9. Zhang, J., Wang, M., Sun, H., Li, X. D., & Zhong, L. P. (2009). Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. African Journal of Biotechnology, 820, 5467–5486.

    Google Scholar 

  10. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172.

    PubMed  PubMed Central  Google Scholar 

  11. Reisinger, C., Osprian, I., Glieder, A., Schoemaker, H. E., Griengl, H., & Schwab, H. (2004). Enzymatic hydrolysis of cyanohydrins with recombinant nitrile hydratase and amidase from Rhodococcus erythropolis. Biotechnology Letters, 26, 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  12. Petrillo, K. L., Wu, S., Hann, E. C., Cooling, F. B., Ben-Bassat, A., Gavagan, J. E., Dicosimo, R., & Payne, M. S. (2005). Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Applied Microbiology and Biotechnology, 67, 664–670.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S.-H., & Oriel, P. (2000). Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme and Microbial Technology, 27, 492–501.

    Article  CAS  PubMed  Google Scholar 

  14. Akimasa, M., Shinya, F., Kiyoshi, I., Hirofumi, S., & Takayoshi, W. (2010). Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. The FEBS Journal, 271, 429–438.

    Google Scholar 

  15. Li, J., Wang, P., He, J. Y., Huang, J., & Tang, J. (2013). Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. Applied Microbiology and Biotechnology, 97, 6685–6692.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, R. C., Yin, X. J., & Zheng, Y. G. (2016). Highly regioselective and efficient production of 1-cyanocyclohexaneacetamide by Rhodococcus aetherivorans ZJB1208 nitrile hydratase. Journal of Chemical Technology and Biotechnology, 91, 1314–1319.

    Article  CAS  Google Scholar 

  17. Nagasawa, T., Mathew, C. D., Mauger, J., & Yamada, H. (1988). Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Applied and Environmental Microbiology, 54, 1766–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21476199, 21676240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirong Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Pei, X., Xu, G. et al. Efficient Production of 2,6-Difluorobenzamide by Recombinant Escherichia coli Expressing the Aurantimonas manganoxydans Nitrile Hydratase. Appl Biochem Biotechnol 187, 439–448 (2019). https://doi.org/10.1007/s12010-018-2823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2823-2

Keywords

Navigation