Skip to main content
Log in

Activity Essential Residue Analysis of Taxoid 10β-O-Acetyl Transferase for Enzymatic Synthesis of Baccatin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Taxoid 10β-O-acetyl transferase (DBAT) is a key enzyme in the biosynthesis of the famous anticancer drug paclitaxel, which catalyses the formation of baccatin III from 10-deacetylbaccatin III (10-DAB). However, the activity essential residues of the enzyme are still unknown, and the acylation mechanism from its natural substrate 10-deacetylbaccatin III and acetyl CoA to baccatin III remains unclear. In this study, the homology modelling, molecular docking, site-directed mutagenesis, and kinetic parameter determination of the enzyme were carried out. The results showed that the enzyme mutant DBATH162A resulted in complete loss of enzymatic activity, suggesting that the residue histidine at 162 was essential to DBAT activity. Residues D166 and R363 which were located in the pocket of the enzyme by homology modelling and molecular docking were also important for DBAT activity through the site-directed mutations. Furthermore, four amino acid residues including S31 and D34 from motif SXXD, D372 and G376 from motif DFGWG also played important roles on acylation. This was the first report of the elucidation of the activity essential residues of DBAT, making it possible for the further structural-based re-design of the enzyme for efficient biotransformation of baccatin III and paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jibodh, R. A., Lagas, J. S., Nuijen, B., Beijnen, J. H., & Schellens, J. H. (2013). Taxanes: old drugs, new oral formulations. European Journal of Pharmacology, 717(1-3), 40–46.

    Article  CAS  Google Scholar 

  2. Nobili, S., Lippi, D., Witort, E., Donnini, M., Bausi, L., Mini, E., & Capaccioli, S. (2009). Natural compounds for cancer treatment and prevention. Pharmacological Research, 59(6), 365–378.

    Article  CAS  Google Scholar 

  3. Wang, Y. F., Shi, Q. W., Dong, M., Kiyota, H., Gu, Y. C., & Cong, B. (2011). Natural taxanes: developments since 1828. Chemical Reviews, 111(12), 7652–7709.

    Article  CAS  Google Scholar 

  4. Mukherjee, S., Ghosh, B., Jha, T. B., & Jha, S. (2002). Variation in content of taxol and related taxanes in eastern Himalayan populations of Taxus wallichiana. Planta Medica, 68(8), 757–759.

    Article  CAS  Google Scholar 

  5. Han, F., Kang, L. Z., Zeng, X. L., Ye, Z. W., Guo, L. Q., & Lin, J. F. (2014). Bioproduction of baccatin III, an advanced precursor of paclitaxol, with transgenic Flammulina velutipes expressing the 10-deacetylbaccatin III-10-O-acetyl transferase gene. Journal of the Science of Food and Agriculture, 94(12), 2376–2383.

    Article  CAS  Google Scholar 

  6. Yang, L., Yang, C., Li, C., Zhao, Q., Liu, L., Fang, X., & Chen, X. Y. (2016). Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Scientific Bulletin (Beijing), 61(1), 3–17.

    Google Scholar 

  7. Croteau, R., Ketchum, R. E., Long, R. M., Kaspera, R., & Wildung, M. R. (2006). Taxol biosynthesis and molecular genetics. Phytochemistry Reviews, 5(1), 75–97.

    Article  CAS  Google Scholar 

  8. Guerra-Bubb, J., Croteau, R., & Williams, R. M. (2012). The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Natural Product Reports, 29(6), 683–696.

    Article  CAS  Google Scholar 

  9. Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20.

    Article  CAS  Google Scholar 

  10. Dang, T. T., Chen, X., & Facchini, P. J. (2015). Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nature Chemical Biology, 11(2), 104–106.

    Article  CAS  Google Scholar 

  11. Walker, K., & Croteau, R. (2000). Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 583–587.

    Article  CAS  Google Scholar 

  12. Loncaric, C., Merriweather, E., & Walker, K. D. (2006). Profiling a taxol pathway 10beta-acetyltransferase: assessment of the specificity and the production of baccatin III by in vivo acetylation in E. coli. Chemistry & Biology, 13(3), 309–317.

    Article  CAS  Google Scholar 

  13. Chau, M., Walker, K., Long, R., & Croteau, R. (2004). Regioselectivity of taxoid-O-acetyltransferases: heterologous expression and characterization of a new taxadien-5alpha-ol-O-acetyltransferase. Archives of Biochemistry and Biophysics, 430(2), 237–246.

    Article  CAS  Google Scholar 

  14. Hai, P., Wen, S. Z., Li, Y., Gao, Y., Jiang, X. J., & Wang, F. (2014). New taxane diterpenoids from Taxus yunnanensis. Natural Products and Bioprospecting, 4(1), 47–51.

    Article  CAS  Google Scholar 

  15. Ondari, M. E., & Walker, K. D. (2008). The taxol pathway 10-O-acetyltransferase shows regioselective promiscuity with the oxetane hydroxyl of 4-deacetyltaxanes. Journal of the American Chemical Society, 130(50), 17187–17194.

    Article  CAS  Google Scholar 

  16. Loncaric, C., Ward, A. F., & Walker, K. D. (2007). Expression of an acetyl-CoA synthase and a CoA-transferase in Escherichia coli to produce modified taxanes in vivo. Biotechnology Journal, 2(2), 266–274.

    Article  CAS  Google Scholar 

  17. Koksal, M., Jin, Y., Coates, R. M., Croteau, R., & Christianson, D. W. (2011). Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature, 469(7328), 116–120.

    Article  Google Scholar 

  18. Wildung, M. R., & Croteau, R. (1996). A cDNA clone for Taxadiene synthase, the Diterpene cyclase that catalyzes the committed step of Taxol biosynthesis. The Journal of Biological Chemistry, 271(16), 9201–9204.

    Article  CAS  Google Scholar 

  19. Williams, D. C., Carroll, B. J., Jin, Q., Rithner, C. D., Lenger, S. R., Floss, H. G., Coates, R. M., Williams, R. M., & Croteau, R. (2000). Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chemistry & Biology, 7(12), 969–977.

    Article  CAS  Google Scholar 

  20. Bontpart, T., Cheynier, V., Ageorges, A., & Terrier, N. (2015). BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. The New Phytologist, 208(3), 695–707.

    Article  CAS  Google Scholar 

  21. Lallemand, L. A., Zubieta, C., Lee, S. G., Wang, Y., Acajjaoui, S., Timmins, J., McSweeney, S., Jez, J. M., McCarthy, J. G., & McCarthy, A. A. (2012). A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiology, 160(1), 249–260.

    Article  CAS  Google Scholar 

  22. Walker, A. M., Hayes, R. P., Youn, B., Vermerris, W., Sattler, S. E., & Kang, C. (2013). Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme a-dependent transferases and synthases. Plant Physiology, 162(2), 640–651.

    Article  CAS  Google Scholar 

  23. John, B., & Sali, A. (2003). Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Research, 31(14), 3982–3992.

    Article  CAS  Google Scholar 

  24. Lovell, S. C., Davis, I. W., Arendall 3rd, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins, 50(3), 437–450.

    Article  CAS  Google Scholar 

  25. Zheng, L., Baumann, U., & Reymond, J. L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 32(14), e115.

    Article  Google Scholar 

  26. Takahashi, K., Hirose, Y., Kamimura, N., Hishiyama, S., Hara, H., Araki, T., Kasai, D., Kajita, S., Katayama, Y., Fukuda, M., & Masai, E. (2015). Membrane-associated glucose-methanol-choline oxidoreductase family enzymes PhcC and PhcD are essential for enantioselective catabolism of dehydrodiconiferyl alcohol. Applied and Environmental Microbiology, 81(23), 8022–8036.

    Article  CAS  Google Scholar 

  27. Winzer, T., Kern, M., King, A. J., Larson, T. R., Teodor, R. I., Donninger, S. L., Li, Y., Dowle, A. A., Cartwright, J., Bates, R., Ashford, D., Thomas, J., Walker, C., Bowser, T. A., & Graham, I. A. (2015). Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science, 349(6245), 309–312.

    Article  CAS  Google Scholar 

  28. Morales-Quintana, L., Fuentes, L., Gaete-Eastman, C., Herrera, R., & Moya-Leon, M. A. (2011). Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit. Journal of Molecular Graphics & Modelling, 29(5), 635–642.

    Article  CAS  Google Scholar 

  29. Unno, H., Ichimaida, F., Suzuki, H., Takahashi, S., Tanaka, Y., Saito, A., Nishino, T., Kusunoki, M., & Nakayama, T. (2007). Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. The Journal of Biological Chemistry, 282(21), 15812–15822.

    Article  CAS  Google Scholar 

  30. Manjasetty, B. A., Yu, X. H., Panjikar, S., Taguchi, G., Chance, M. R., & Liu, C. J. (2012). Structural basis for modification of flavonol and naphthol glucoconjugates by Nicotiana tabacum malonyltransferase (NtMaT1). Planta, 236(3), 781–793.

    Article  CAS  Google Scholar 

  31. Molina, I., & Kosma, D. (2014). Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids. Plant Cell Reports, 34, 587–601.

    Article  Google Scholar 

  32. Ma, X., Koepke, J., Panjikar, S., Fritzsch, G., & Stockigt, J. (2005). Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. The Journal of Biological Chemistry, 280(14), 13576–13583.

    Article  CAS  Google Scholar 

  33. Li, B. J., Wang, H., Gong, T., Chen, J. J., Chen, T. J., Yang, J. L., & Zhu, P. (2017). Improving 10-deacetylbaccatin III-10-beta-O-acetyltransferase catalytic fitness for Taxol production. Nature Communications, 8, 15544.

    Article  CAS  Google Scholar 

  34. Galaz, S., Morales-Quintana, L., Moya-Leon, M. A., & Herrera, R. (2013). Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. The FEBS Journal, 280(5), 1344–1357.

    Article  CAS  Google Scholar 

  35. Bayer, A., Ma, X., & Stockigt, J. (2004). Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase. Bioorganic & Medicinal Chemistry, 12(10), 2787–2795.

    Article  CAS  Google Scholar 

  36. Gerasimenko, I., Ma, X., Sheludko, Y., Mentele, R., Lottspeich, F., & Stockigt, J. (2004). Purification and partial amino acid sequences of the enzyme vinorine synthase involved in a crucial step of ajmaline biosynthesis. Bioorganic & Medicinal Chemistry, 12(10), 2781–2786.

    Article  CAS  Google Scholar 

  37. Tuominen, L. K., Johnson, V. E., & Tsai, C. J. (2011). Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genomics, 12(1), 236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Program of Guangdong Province (grant number 2014B050505018, 2014B020205003, 2015A020209121) and the National Natural Science Foundation of China (grant number 31071837, 31372116, 31572178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Fang Lin or Li-Qiong Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Electronic Supplementary Material

ESM 1

(DOC 659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, LF., Wei, T., Zheng, QW. et al. Activity Essential Residue Analysis of Taxoid 10β-O-Acetyl Transferase for Enzymatic Synthesis of Baccatin. Appl Biochem Biotechnol 186, 949–959 (2018). https://doi.org/10.1007/s12010-018-2789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2789-0

Keywords

Navigation