Skip to main content
Log in

Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Currently, the heavy metal pollution is of grave concern, and the part of microorganism for metal bioremediation should take into account as an efficient and economic strategy. On this framework, the heavy metal stress consequences on exopolysaccharide (EPS)-producing agricultural isolate, Pantoea agglomerans, were studied. The EPS production is a protective response to stress to survive and grow in the metal-contaminated environment. P. agglomerans show tolerance and mucoid growth in the presence of heavy metals, i.e., mercury, copper, silver, arsenic, lead, chromium, and cadmium. EDX first confirmed the metal accumulation and further, FTIR determined the functional groups involved in metal binding. The ICP-AES identified the location of cell-bound and intracellular metal accumulation. Metal deposition on cell surface has released more Ca2+. The effect on bacterial morphology investigated with SEM and TEM revealed the sites of metal accumulation, as well as possible structural changes. Each heavy metal caused distinct change and accumulated on cell-bound EPS with some intracellular deposits. The metal stress caused a decrease in total protein content and increased in total carbohydrate with a boost in EPS. Thus, the performance of P. agglomerans under metal stress indicated a potential candidate for metal bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mclaughlin, M. J., Parke, D. R., & Clarke, J. M. (1999). Metals and micronutrients—food safety issues. Field Crops Research, 60(1-2), 143–163.

    Article  Google Scholar 

  2. Rasmussen, L. D., & Sørensen, S. J. (1998). The effect of long term exposure to mercury on the bacterial community in marine sediment. Current Microbiology, 36(5), 291–297.

    Article  CAS  PubMed  Google Scholar 

  3. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730–750.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson, T. A., West, M. M., & Leppard, G. G. (2011). Accumulation and partitioning of heavy metals by bacterial cells and associated colloidal minerals, with alteration, neoformation, and selective adsorption of minerals by bacteria, in metal-polluted lake sediment. Geomicrobiology Journal, 28(1), 23–55.

    Article  CAS  Google Scholar 

  5. Gadd, G. M. (1992). Molecular biology and biotechnology of microbial interactions with organic and inorganic heavy metal compounds. In R. A. Herbert & R. J. Sharp (Eds.), Molecular biology and biotechnology of extremophiles (pp. 225–257). Glasgow: Blackie and Sons.

    Chapter  Google Scholar 

  6. Silver, S., & Phung, L. T. (1996). Bacterial heavy metal resistance: new surprises. Annual Review of Microbiology, 50(1), 753–789.

    Article  CAS  PubMed  Google Scholar 

  7. Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in Bioengineering and Biotechnology, 3(200), 1–16.

    Google Scholar 

  8. Dogan, N. M., Doganli, G. A., Dogan, G., & Bozkaya, O. (2015). Characterization of extracellular polysaccharides (EPS) produced by thermal bacillus and determination of environmental conditions affecting exopolysaccharide production. International Journal of Environmental Research, 9, 1107–1116.

    CAS  Google Scholar 

  9. Cefalo, A. D. (2012). Characterization of the function and interaction of proteins involved in exopolysaccharide synthesis in Streptococcus thermophilus, Streptococcus iniae, and Lactococcus lactis subsp. cremoris. Utah State University.

  10. Comte, S., Guibaud, G., & Baudu, M. (2008). Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Materials, 151(1), 185–193.

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe, M., Kawahara, K., Sasaki, K., & Noparatnaraporn, N. (2003). Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. Journal of Bioscience and Bioengineering, 95(4), 374–378.

    Article  CAS  PubMed  Google Scholar 

  12. Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50(3), 340–343.

    Article  CAS  PubMed  Google Scholar 

  13. Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90(1), 71–74.

    Article  CAS  PubMed  Google Scholar 

  14. Sulaymon, A. H., Ebrahim, S. E., & Mohammed-Ridha, M. J. (2013). Equilibrium, kinetic, and thermodynamic biosorption of Pb (II), Cr (III), and Cd (II) ions by dead anaerobic biomass from synthetic wastewater. Environmental Science and Pollution Research, 20(1), 175–187.

    Article  CAS  PubMed  Google Scholar 

  15. Mohite, B. V., Koli, S. H., Narkhede, C. P., Patil, S. N., & Patil, S. V. (2017). Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied Biochemistry and Biotechnology, 183(2), 582–600.

    Article  CAS  PubMed  Google Scholar 

  16. Guibaud, G., Comte, S., Bordas, F., Dupuy, S., & Baudu, M. (2005). Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere, 59(5), 629–638.

    Article  CAS  PubMed  Google Scholar 

  17. Omar, N. B., Merroun, M. L., Peñalver, J. M., & Muñoz, M. T. (1997). Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere, 35(10), 2277–2283.

    Article  CAS  PubMed  Google Scholar 

  18. Lau, T. C., Wu, X. A., Chua, H., Qian, P. Y., & Wong, P. K. (2005). Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Science and Technology, 52, 63–68.

    Article  CAS  Google Scholar 

  19. Pal, A., & Paul, A. K. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Microbiology, 48(1), 49–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Święciło, A., & Zych-Wężyk, I. (2013). Bacterial stress response as an adaptation to life in a soil environment. Polish Journal of Environmental Studies, 22, 1577–1587.

    Google Scholar 

  21. Yazdi, S., & Ardekani, A. M. (2012). Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics, 6(4), 044114.

    Article  PubMed Central  Google Scholar 

  22. Leigh, J. A., & Coplin, D. L. (1992). Exopolysaccharides in plant-bacterial interactions. Annual Review of Microbiology, 46(1), 307–346.

    Article  CAS  PubMed  Google Scholar 

  23. Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8), 834–840.

    Article  CAS  Google Scholar 

  24. Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48(4), 427–435.

    Article  CAS  PubMed  Google Scholar 

  25. del Carmen Vargas-García, M., Lópezm, M. J., Suárez-Estrella, F., & Moreno, J. (2012). Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Science of the Total Environment, 431, 62–67.

    Article  CAS  Google Scholar 

  26. Omoike, A., & Chorover, J. (2006). Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta, 70(4), 827–838.

    Article  CAS  Google Scholar 

  27. Benson, H. J. (1994). Microbiological applications. In C. Wan (Ed.), Laboratory manual in general microbiology. Dubuque: Brown Publishers.

    Google Scholar 

  28. Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P., & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology, 38(10), 3623–3630.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozturk, S., Aslim, B., & Ugur, A. (2008). Chromium (VI) resistance and extracellular polysaccharide (EPS) synthesis by Pseudomonas, Stenotrophomonas and Methylobacterium strains. ISIJ International, 48(11), 1654–1658.

    Article  CAS  Google Scholar 

  31. Harley, J. P., & Prescott, L. M. (1989). Laboratory exercises in microbiology, 5th edn. (pp. 32–34). New York: McGraw-Hill Companies.

  32. Golding, C. G., Lamboo, L. L., Beniac, D. R., & Booth, T. F. (2016). The scanning electron microscope in microbiology and diagnosis of infectious disease. Scientific Reports, 6(26516), 1–8.

    Google Scholar 

  33. Al-Momani, F. A., Massadeh, A. M., & Hadad, Y. A. (2007). Uptake of zinc and copper by halophilic bacteria isolated from the Dead Sea Shore, Jordan. Biological Trace Element Research, 115(3), 291–300.

    Article  CAS  PubMed  Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  PubMed  Google Scholar 

  35. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  36. Bitton, G., & Freihofer, V. (1978). Influence of extracellular polysaccharides on the toxicity of copper and cadmium towards Klebsiella aerogenes. Microbial Ecology, 4, 119–125.

    Article  CAS  Google Scholar 

  37. Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339.

    Article  CAS  PubMed  Google Scholar 

  38. Czaczyk, K., & Myszka, K. (2007). Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16(6), 799–806.

    CAS  Google Scholar 

  39. Iyer, A., Mody, K., & Jha, B. (2004). Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloacae. Marine Pollution Bulletin, 49(11-12), 974–977.

    Article  CAS  PubMed  Google Scholar 

  40. Kılıç, N. K., & Dönmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. Journal of Hazardous Materials, 154(1-3), 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  41. Breierová, E., Hromádková, Z., Stratilová, E., Sasinková, V., & Ebringerová, A. (2005). Effect of salt stress on the production and properties of extracellular polysaccharides produced by Cryptococcus laurentii. Zeitschrift für Naturforschung C, 60, 444–450.

    Article  Google Scholar 

  42. Silver, S. (1991). Bacterial heavy metal resistance systems and possibility of bioremediation. In Biotechnology: bridging research and applications (pp. 265–287). Netherlands: Springer.

    Chapter  Google Scholar 

  43. Ozdemir, G., Ceyhan, N., Ozturk, T., Akirmak, F., & Cosar, T. (2004). Biosorption of chromium (VI), cadmium (II) and copper (II) by Pantoea sp. TEM18. Chemical Engineering Journal, 102(3), 249–253.

    Article  CAS  Google Scholar 

  44. Liu, H., & Fang, H. H. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80(7), 806–811.

    Article  CAS  PubMed  Google Scholar 

  45. Sun, P., Hui, C., Bai, N., Yang, S., Wan, L., Zhang, Q., & Zhao, Y. (2015). Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Scientific Reports, 5(1), 17465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Čopíková, J., Barros, A. S., Šmídová, I., Černá, M., Teixeira, D. H., Delgadillo, I., Synytsya, A., & Coimbra, M. A. (2006). Influence of hydration of food additive polysaccharides on FT-IR spectra distinction. Carbohydrate Polymers, 63(3), 355–359.

    Article  CAS  Google Scholar 

  47. Davis, T. A., Llanes, F., Volesky, B., & Mucci, A. (2003). Metal selectivity of Sargassum spp. and their alginates in relation to their α-L-guluronic acid content and conformation. Environmental Science & Technology, 37(2), 261–267.

    Article  CAS  Google Scholar 

  48. Deschatre, M., Ghillebaert, F., Guezennec, J., & Colin, C. S. (2013). Sorption of copper (II) and silver (I) by four bacterial exopolysaccharides. Applied Biochemistry and Biotechnology, 171(6), 1313–1327.

    Article  CAS  PubMed  Google Scholar 

  49. Milanowski, M., Pomastowski, P., Railean-Plugaru, V., Rafińska, K., Ligor, T., & Buszewski, B. (2017). Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS One, 12(3), e0174521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, Z., Zhou, C., Wu, J., Zhou, J., & Wang, L. (2005). A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(6), 1195–2000.

    Article  CAS  Google Scholar 

  51. Bueno, B. Y., Torem, M. L., Molina, F. A., & De Mesquita, L. M. (2008). Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: equilibrium and kinetic studies. Minerals Engineering, 21(1), 65–75.

    Article  CAS  Google Scholar 

  52. Mungasavalli, D. P., Viraraghavan, T., & Jin, Y. C. (2007). Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 214–223.

    Article  CAS  Google Scholar 

  53. Lameiras, S., Quintelas, C., & Tavares, T. (2008). Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresource Technology, 99(4), 801–816.

    Article  CAS  PubMed  Google Scholar 

  54. Jaafar, R., Al-Sulami, A., Al-Taee, A., Aldoghachi, F., Suhaimi, N., & Mohammed, S. (2016). Biosorption of some heavy metals by Deinococcus radiodurans isolated from soil in Basra Governorate-Iraq. Journal of Bioremediation & Biodegradation, 7, 2.

    Google Scholar 

  55. Neumann, G., Veeranagouda, Y., Karegoudar, T. B., Sahin, Ö., Mäusezahl, I., Kabelitz, N., Kappelmeyer, U., & Heipieper, H. J. (2005). Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles, 9(2), 163–168.

    Article  CAS  PubMed  Google Scholar 

  56. Adarsh, V. K., Mishra, M., Chowdhury, S., Sudarshan, M., Thakur, A. R., & Chaudhuri, S. R. (2007). Studies on metal microbe interaction of three bacterial isolates from East Calcutta Wetland. OnLine Journal of Biological Sciences, 7(2), 80–88.

    Article  CAS  Google Scholar 

  57. Panwichian, S., Kantachote, D., Wittayaweerasak, B., & Mallavarapu, M. (2011). Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electronic Journal of Biotechnology, 14, 2–22.

    Google Scholar 

  58. Chakravarty, R., Manna, S., Ghosh, A. K., & Banerjee, P. C. (2007). Morphological changes in an Acidocella strain in response to heavy metal stress. Research Journal of Microbiology, 2, 742–748.

    Article  CAS  Google Scholar 

  59. Baptista, M. S., & Vasconcelos, M. T. (2006). Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Critical Reviews in Microbiology, 32(3), 127–137.

    Article  CAS  PubMed  Google Scholar 

  60. Vaituzis, Z., Nelson, J. D., Wan, L. W., & Colwell, R. R. (1975). Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Applied Microbiology, 29(2), 275–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, Z., Jacobsen, F. E., & Giedroc, D. P. (2009). Coordination chemistry of bacterial metal transport and sensing. Chemical Reviews, 109(10), 4644–4681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Srivastava, S., & Thakur, I. S. (2007). Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation, 18(5), 637–646.

    Article  CAS  PubMed  Google Scholar 

  63. Daulton, T. L., Little, B. J., Jones-Meehan, J., Blom, D. A., & Allard, L. F. (2007). Microbial reduction of chromium from the hexavalent to divalent state. Geochimica et Cosmochimica Acta, 71(3), 556–565.

    Article  CAS  Google Scholar 

  64. Bencheikh-Latmani, R., Obraztsova, A., Mackey, M. R., Ellisman, M. H., & Tebo, B. M. (2007). Toxicity of Cr (III) to Shewanella sp. strain MR-4 during Cr (VI) reduction. Environmental Science & Technology, 41(1), 214–220.

    Article  CAS  Google Scholar 

  65. Huang, F., Guo, C. L., Lu, G. N., Yi, X. Y., Zhu, L. D., & Dangm, Z. (2014). Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, 109, 134–142.

    Article  CAS  PubMed  Google Scholar 

  66. Sutherland, I. W. (2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, 147(1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427–451.

    Article  CAS  PubMed  Google Scholar 

  68. Diaz-Visurraga, J., Cárdenas, G., & García, A. (2010). Morphological changes induced in bacteria as evaluated by electron microscopy. In A. Méndez-Vilas & J. Díaz (Eds.), Microscopy: science, technology, applications and education (pp. 307–315). Badajoz: Formatex.

    Google Scholar 

  69. Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-Puertas, M. C., McCarthy, I., & Luis, A. (2002). Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40(6–8), 521–530.

    Article  CAS  Google Scholar 

  70. Sardar, K. H., Qing, C. A., Hesham, A. E., Yue, X., & He, J. Z. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 19, 834–840.

    Article  Google Scholar 

  71. El-Sayed, M. S., Rehab, M. M., & Ahmed, A. S. (2008). Behavioral response of resistant and sensitive Pseudomonas aeruginosa S22 isolated from Sohag Governorate, Egypt to cadmium stress. African Journal of Biotechnology, 7(14), 2375–2385.

    CAS  Google Scholar 

  72. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mathew, B. B., Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: a review. Journal of Pharmacy Research, 4(12), 4340–4343.

    Google Scholar 

  74. Qurashi, A. W., & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43(3), 1183–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pereira, S., Micheletti, E., Zille, A., Santos, A., Moradas-Ferreira, P., Tamagnini, P., & De Philippis, R. (2011). Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology, 157(2), 451–458.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Engineering Research Board (SERB) under the Start Up Research Grant (Young Scientist) to BVM (File No. YSS/2015/001722). Authors are also thankful to UGC-SAP and DST-FIST for providing financial support to the School of Life Sciences. BVM thankful to SAIF, AIIMS, New Delhi for providing TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohite, B.V., Koli, S.H. & Patil, S.V. Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Appl Biochem Biotechnol 186, 199–216 (2018). https://doi.org/10.1007/s12010-018-2727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2727-1

Keywords

Navigation