Skip to main content

Advertisement

Log in

Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 109 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohajan, H. K. (2015). Tuberculosis is a fatal disease among some developing countries of the world. American Journal of Infectious Diseases and Microbiology, 3, 18–31.

    CAS  Google Scholar 

  2. Stewart, G. R., Robertson, B. D., & Young, D. B. (2003). Tuberculosis: A problem with persistence. Nature Reviews Microbiology, 1, 97–105.

    Article  CAS  Google Scholar 

  3. Zumla, A., George, A., Sharma, V., Herbert, R. H. N., Baroness Masham of Ilton, Oxley, A., & Oliver, M. (2015). The WHO 2014 global tuberculosis report—further to go. The Lancet Global Health, 3, e10–e12.

    Article  Google Scholar 

  4. Jacobs, A. J., Mongkolsapaya, J., Screaton, G. R., McShane, H., & Wilkinson, R. J. (2016). Antibodies and tuberculosis. Tuberculosis, 101, 102–113.

    Article  CAS  Google Scholar 

  5. Lim, B. N., Tye, G. J., Choong, Y. S., Ong, E. B. B., Ismail, A., & Lim, T. S. (2014). Principles and application of antibody libraries for infectious diseases. Biotechnology Letters, 36, 2381–2392.

    Article  CAS  Google Scholar 

  6. Kramer, R. A., Marissen, W. E., Goudsmit, J., Visser, T. J., Bakker, A. Q., de Jong, M., & Weldon, W. C. (2005). The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries. European Journal of Immunology, 35, 2131–2145.

    Article  CAS  Google Scholar 

  7. Rahumatullah, A., Ahmad, A., Noordin, R., & Lim, T. S. (2015). Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library. Molecular Immunology, 67, 512–523.

    Article  CAS  Google Scholar 

  8. Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R. K., & Morgan, A. C. (1985). Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Research, 45, 879–885.

    CAS  Google Scholar 

  9. Beck, S. T., Leite, O. M., Arruda, R. S., & Ferreira, A. W. (2005). Humoral response to low molecular weight antigens of Mycobacterium tuberculosis by tuberculosis patients and contacts. Brazilian Journal of Medical and Biological Research, 38, 587–596.

    Article  CAS  Google Scholar 

  10. Demkow, U., Zielonka, T., Nowak-Misiak, M., Filewska, M., Bialas, B., Strzalkowski, J., & Skopinska-Rozewska, E. (2002). Humoral immune response against 38-kDa and 16-kDa mycobacterial antigens in bone and joint tuberculosis. The International Journal of Tuberculosis and Lung Disease, 6, 1023–1028.

    CAS  Google Scholar 

  11. Yuan, Y., Crane, D. D., & Barry, C. E. (1996). Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. Journal of Bacteriology, 178, 4484–4492.

    Article  CAS  Google Scholar 

  12. Teitelbaum, R., Glatman-Freedman, A., Chen, B., Robbins, J. B., Unanue, E., Casadevall, A., & Bloom, B. R. (1998). A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proceedings of the National Academy of Sciences, 95, 15688–15693.

    Article  CAS  Google Scholar 

  13. Sixholo, J., Van Wyngaardt, W., Mashau, C., Frischmuth, J., Du Plessis, D. H., & Fehrsen, J. (2011). Improving the characteristics of a mycobacterial 16 kDa-specific chicken scFv. Biologicals, 39, 110–116.

    Article  CAS  Google Scholar 

  14. Lim, T. S., Mollova, S., Rubelt, F., Sievert, V., Dübel, S., Lehrach, H., & Konthur, Z. (2010). V-gene amplification revisited—an optimised procedure for amplification of rearranged human antibody genes of different isotypes. New Biotechnology, 27, 108–117.

    Article  CAS  Google Scholar 

  15. Lim, B. N., Chin, C. F., Choong, Y. S., Ismail, A., & Lim, T. S. (2016). Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon, 117, 94–101.

    Article  CAS  Google Scholar 

  16. Hairul Bahara, N. H., Chin, S. T., Choong, Y. S., & Lim, T. S. (2016). Construction of a semisynthetic human VH single-domain antibody library and selection of domain antibodies against α-crystalline of mycobacterium tuberculosis. Journal of Biomolecular Screening, 21, 35–43.

    Article  Google Scholar 

  17. Brochet, X., Lefranc, M. P., & Giudicelli, V. (2008). IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized VJ and VDJ sequence analysis. Nucleic Acids Research, 36, W503–W508.

    Article  CAS  Google Scholar 

  18. Lefranc, M. P., Giudicelli, V., Kaas, Q., Duprat, E., Jabado-Michaloud, J., Scaviner, D., & Lefranc, G. (2005). IMGT, the international ImMunoGeneTics information system®. Nucleic Acids Research, 33, D593–D597.

    Article  CAS  Google Scholar 

  19. Retter, I., Althaus, H. H., Münch, R., & Müller, W. (2005). VBASE2, an integrative V gene database. Nucleic Acids Research, 33(Database issue), D671–D674.

  20. Finlay, W. J., & Almagro, J. C. (2012). Natural and man-made V-gene repertoires for antibody discovery. Frontiers in Immunology, 3, 342.

    Google Scholar 

  21. Larimore, K., McCormick, M. W., Robins, H. S., & Greenberg, P. D. (2012). Shaping of human germline IgH repertoires revealed by deep sequencing. The Journal of Immunology, 189, 3221–3230.

    Article  CAS  Google Scholar 

  22. Wu, L., Oficjalska, K., Lambert, M., Fennell, B. J., Darmanin-Sheehan, A., Shúilleabháin, D. N., & Paulsen, J. (2012). Fundamental characteristics of the immunoglobulin VH repertoire of chickens in comparison with those of humans, mice, and camelids. The Journal of Immunology, 188, 322–333.

    Article  CAS  Google Scholar 

  23. Rao, M., Valentini, D., Poiret, T., Dodoo, E., Parida, S., Zumla, A., Brighenti, S., & Maeurer, M. (2015). B in TB: B cells as mediators of clinically relevant immune responses in tuberculosis. Clinical Infectious Diseases, 61(Suppl 3), S225–S234. https://doi.org/10.1093/cid/civ614.

  24. Williams, A., Reljic, R., Naylor, I., Clark, S. O., Falero-Diaz, G., Singh, M., & Ivanyi, J. (2004). Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology, 111, 328–333.

    Article  CAS  Google Scholar 

  25. Fuchs, M., Kämpfer, S., Helmsing, S., Spallek, R., Oehlmann, W., Prilop, W., & Hust, M. (2014). Novel human recombinant antibodies against mycobacterium tuberculosis antigen 85B. BMC Biotechnology, 14, 68.

    Article  Google Scholar 

  26. Ferrara, F., Naranjo, L. A., Kumar, S., Gaiotto, T., Mukundan, H., Swanson, B., & Bradbury, A. R. (2012). Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PloS One, 7, e49535.

    Article  CAS  Google Scholar 

  27. Cummings, P. J., Hooper, N. E., & Rowland, S. S. (1998). Generation of a recombinant bacteriophage antibody library to Mycobacterium tuberculosis. Hybridoma, 17, 151–156.

    Article  CAS  Google Scholar 

  28. Schaffitzel, C., Hanes, J., Jermutus, L., & Plückthun, A. (1999). Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods, 231, 119–135.

    Article  CAS  Google Scholar 

  29. Moon, S. A., Ki, M. K., Lee, S., Hong, M. L., Kim, M., Kim, S., & Shim, H. (2011). Antibodies against non-immunizing antigens derived from a large immune scFv library. Molecules and Cells, 31, 509–513.

    Article  CAS  Google Scholar 

  30. Chassagne, S., Laffly, E., Drouet, E., Hérodin, F., Lefranc, M. P., & Thullier, P. (2004). A high-affinity macaque antibody Fab with human-like framework regions obtained from a small phage display immune library. Molecular Immunology, 41, 539–546.

    Article  CAS  Google Scholar 

  31. Perley, C. C., Frahm, M., Click, E. M., Dobos, K. M., Ferrari, G., Stout, J. E., & Frothingham, R. (2014). The human antibody response to the surface of Mycobacterium tuberculosis. PloS One, 9, e98938.

    Article  Google Scholar 

  32. Sousa, A. O., Henry, S., Maroja, F. M., Lee, F. K., Brum, L., Singh, M., & Aucouturier, P. (1998). IgG subclass distribution of antibody responses to protein and polysaccharide mycobacterial antigens in leprosy and tuberculosis patients. Clinical and Experimental Immunology, 111, 48–55.

    Article  CAS  Google Scholar 

  33. Suzuki, M. T., & Giovannoni, S. J. (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 62, 625–630.

    CAS  Google Scholar 

  34. Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering, 96, 317–323.

    Article  CAS  Google Scholar 

  35. Andris, J. S., Brodeur, B. R., & Capra, J. D. (1993). Molecular characterization of human antibodies to bacterial antigens: utilization of the less frequently expressed VH2 and VH6 heavy chain variable region gene families. Molecular Immunology, 30, 1601–1616.

    Article  CAS  Google Scholar 

  36. Chothia, C., & Lesk, A. M. (1987). Canonical structures for the hypervariable regions of immunoglobulins. Journal of Molecular Biology, 196, 901–917.

    Article  CAS  Google Scholar 

  37. Kunik, V., & Ofran, Y. (2013). The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Engineering Design and Selection, 26, 599–609.

    Article  CAS  Google Scholar 

  38. Marchuk, D., Drumm, M., Saulino, A., & Collins, F. S. (1991). Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Research, 19, 1154.

    Article  CAS  Google Scholar 

  39. Ewert, S., Huber, T., Honegger, A., & Plückthun, A. (2003). Biophysical properties of human antibody variable domains. Journal of Molecular Biology, 325, 531–553.

    Article  CAS  Google Scholar 

  40. Kim, D. Y., To, R., Kandalaft, H., Ding, W., van Faassen, H., Luo, Y., & Kelly, J. F. (2014). Antibody light chain variable domains and their biophysically improved versions for human immunotherapy. In MAbs, 6, 219–235.

    Article  Google Scholar 

  41. Georgiou, G., Ippolito, G. C., Beausang, J., Busse, C. E., Wardemann, H., & Quake, S. R. (2014). The promise and challenge of high-throughput sequencing of the antibody repertoire. Nature Biotechnology, 32, 158–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the Malaysian Ministry of Higher Education through the Fundamental Research Grant (FRGS) Scheme (grant no: 203/CIPPM/6711381) and Malaysian Ministry of Higher Education Higher Institution Centre of Excellence (HICoE) grant (grant no: 311/CIPPM/44001005). NMN acknowledges the support from the Malaysian Ministry of Higher Education through the Long-term Research Grant Scheme (LRGS) Scheme (grant no: 203/PPSK/67212002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theam Soon Lim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidon, N.H., Suraiya, S., Sarmiento, M.E. et al. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections. Appl Biochem Biotechnol 184, 852–868 (2018). https://doi.org/10.1007/s12010-017-2582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2582-5

Keywords

Navigation