Skip to main content
Log in

Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of microorganism fermentation for production of fumaric acid (FA), which is widely used in food, medicine, and other fields, can provide technical support for the FA industry. In this study, we aimed to increase the titer of FA production by using an improved Rhizopus oryzae WHT5, which was domesticated to obtain a furfural-resistant strain in corncob hydrolytes. The metabolic pathways and metabolic network of this strain were investigated, and the related enzymes and metabolic flux were analyzed. Metabolic pathway analysis showed that the R. oryzae WHT5 strain produced FA mainly through two pathways. One occurred in the cytoplasm and the other was a mitochondrial pathway. The key parameters of the fermentation process were analyzed. The FA titer was 49.05 g/L from corncob hydrolytes using R. oryzae WHT5 in a 7-L bioreactor. The use of a furfural-resistant strain developed through domestication effectively increased the titer of FA. This capacity of the microorganisms to produce high amounts of FA by bioconverting corncob hydrolyte can be further applied for industrial production of FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gu, S., Xu, Q., Huang, H., & Li, S. (2014). Alternative respiration and fumaric acid production of Rhizopus oryzae. Applied Microbiology and Biotechnology, 98, 5145–5152.

    Article  CAS  Google Scholar 

  2. Zhang, B. H., Christopher, D. S., & Yang, S. T. (2012a). Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metabolic Engineering, 14, 512–520.

    Article  CAS  Google Scholar 

  3. Fu, Y. Q., Li, S., Chen, Y., Xu, Q., Huang, H., & Sheng, X. Y. (2010). Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy. Applied Biochemistry and Biotechnology, 162, 1031–1038.

    Article  CAS  Google Scholar 

  4. Zhang, B. H., & Yang, S. T. (2012b). Metabolic engineering of Rhizopus oryzae: effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochemistry, 47, 2159–2165.

    Article  CAS  Google Scholar 

  5. Liu, Y., Song, J., Tan, T., & Liu, L. (2015). Production of fumaric acid from l-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8. Applied Biochemistry and Biotechnology, 175, 2823–2831.

    Article  CAS  Google Scholar 

  6. Ding, Y. Y., Li, S., Dou, C., Yu, Y., & Huang, H. (2011). Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio. Applied Biochemistry and Biotechnology, 164, 1461–1467.

    Article  CAS  Google Scholar 

  7. Zhou, Z., Du, G., Hua, Z., Zhou, J., & Chen, J. (2011). Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresource Technology, 102, 9345–9349.

    Article  CAS  Google Scholar 

  8. Das, R. K., Brar, S. K., & Verma, M. (2015). Enhanced fumaric acid production from brewery wastewater by immobilization technique. Journal of Chemical Technology & Biotechnology, 90, 1473–1479.

    Article  CAS  Google Scholar 

  9. Huang, L., Wei, P. L., Zang, R., Xu, Z., & Cen, P. (2010). High-throughput screening of high-yield colonies of Rhizopus oryzae for enhanced production of fumaric acid. Annals of Microbiology, 60, 287–292.

    Article  CAS  Google Scholar 

  10. Roa Engel, C. A., van Gulik, W. M., Marang, L., van der Wielen, L. A. M., & Straathof, A. J. J. (2011). Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme and Microbial Technology, 48, 39–47.

    Article  CAS  Google Scholar 

  11. Wang, G. Y., Huang, D., Qi, H. S., & Chen, Y. (2013). Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresource Technology, 137, 1–8.

    Article  CAS  Google Scholar 

  12. Wang, G. Y., Huang, D., Li, Y., Wen, J., & Jia, X. (2015). A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresource Technology, 180, 119–127.

    Article  CAS  Google Scholar 

  13. Xu, Q., Li, S., Fu, Y. Q., Tai, C., & Huang, H. (2010). Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresource Technology, 101, 6262–6264.

    Article  CAS  Google Scholar 

  14. Zhou, Y., Du, J., & Tsao, G. T. (2002). Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess and Biosystems Engineering, 25, 179–181.

    Article  CAS  Google Scholar 

  15. Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., Liu, Z. L., & Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2.

    Article  Google Scholar 

  16. Liu, Z., Ying, Y., Li, F., Ma, C., & Xu, P. (2010). Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology & Biotechnology, 37, 495–501.

    Article  CAS  Google Scholar 

  17. Li, X. J., Liu, Y., Yang, Y., Zhang, H., Wang, H., Wu, Y., Zhang, M., Sun, T., Cheng, J., Wu, X., Pan, L., Jiang, S., & Wu, H. (2014). High production of malic acid by biotransform of crop hydrolyte with an isolated Rhizopus delemar strain. Biotechnology and Bioprocess Engineering, 19, 478–492.

    Article  CAS  Google Scholar 

  18. Kregiel, D., Berlowska, J., & Ambroziak, W. (2008). Succinate dehydrogenase activity assay in situ with blue tetrazolium salt in crabtree-positive Saccharomyces cerevisiae strain. Food Technology and Biotechnology, 46, 376–380.

    CAS  Google Scholar 

  19. Wu, X., Jiang, S., Liu, M., Pan, L., Zheng, Z., & Luo, S. (2011). Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. Journal of Industrial Microbiology & Biotechnology, 38, 565–571.

    Article  CAS  Google Scholar 

  20. Nielsen, J. (2001). Metabolic engineering. Applied Microbiology and Biotechnology, 55, 263–283.

    Article  CAS  Google Scholar 

  21. Riascosa, C. A. M., Gombert, A. K., & Pinto, J. M. (2005). A global optimization approach for metabolic flux analysis based on labeling balances. Computers and Chemical Engineering, 29, 447–458.

    Article  Google Scholar 

  22. Li, X. J., Zheng, Z., Wei, Z. J., Jiang, S. T., Pan, L. J., & Weng, S. B. (2009). Screening, breeding and metabolic modulating of a strain producing succinic acid with corn straw hydrolyte. World Journal of Microbiology and Biotechnology, 25, 667–677.

    Article  Google Scholar 

  23. Coban, H. B., & Demirci, A. (2016). Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production. Bioprocess and Biosystems Engineering, 39, 323–330.

    Article  CAS  Google Scholar 

  24. Duarte, W. F., Amorim, J. C., Lago, L. A., Dias, D. R., & Schwan, R. F. (2011). Optimization of fermentation conditions for production of the Jabuticaba (Myrciaria cauliflora) spirit using the response surface methodology. Journal of Food Science, 76, 782–790.

    Article  Google Scholar 

  25. Koak, J. H., Kang, B. S., Hahm, Y. T., Park, C. S., Baik, M. Y., & Kim, B. Y. (2010). Blending of different domestic grape wines using mixture design and optimization technique. Food Science and Biotechnology, 19, 1011–1018.

    Article  Google Scholar 

  26. Tai, C., Li, S., Xu, Q., Ying, H., Huang, H., & Ouyang, P. (2010). Chitosan production from hemicellulose hydrolysate of corn straw: impact of degradation products on Rhizopus oryzae growth and chitosan fermentation. Letters in Applied Microbiology, 51, 278–284.

    Article  CAS  Google Scholar 

  27. Maas, R. H. W., Springer, J., Eggink, G., & Weusthuis, R. A. (2008). Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L(+)-lactic acid production. Journal of Industrial Microbiology & Biotechnology, 35, 569–578.

    Article  CAS  Google Scholar 

  28. Meussen, B. J., de Graaff, L. H., Sanders, J. P. M., & Weusthuis, R. A. (2012). Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Applied Microbiology and Biotechnology, 94, 875–886.

    Article  CAS  Google Scholar 

  29. Lopez, J. L. C., Perez, J. A. S., Sevilla, J. M. F., Fernandez, F. G. A., Grima, E. M., & Chisti, Y. (2004). Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology. Journal of Chemical Technology and Biotechnology, 79, 1119–1126.

    Article  CAS  Google Scholar 

  30. Li, W., Du, W., & Liu, D. (2007). Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 45, 122–127.

    Article  CAS  Google Scholar 

  31. Das, R. K., & Brar, S. K. (2014). Enhanced fumaric acid production from brewery wastewater and insight into the morphology of Rhizopus oryzae 1526. Applied Biochemistry and Biotechnology, 172, 2974–2988.

    Article  CAS  Google Scholar 

  32. Xu, Q., Li, S., Huang, H., & Wen, J. (2012). Key technologies for the industrial production of fumaric acid by fermentation. Biotechnology Advances, 30, 1685–1696.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No: 31601465), the Science and Technology Plan Projects of Anhui Province (No: 15CZZ03100, 15CZZ03096), and Nature Science of Educational Commission in Anhui Province of China (No: KJ2015A216). We would like to thank Editage [http://online.editage.cn/] for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, Q., Deng, Y. et al. Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain. Appl Biochem Biotechnol 184, 553–569 (2018). https://doi.org/10.1007/s12010-017-2554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2554-9

Keywords

Navigation