Skip to main content

Advertisement

Log in

Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial hyaluronic acid (HA) production has been preferred rather than extraction from animal tissue for medical and cosmetic applications. In this context, to obtain an economically competitive HA production by Streptococcus zooepidemicus, culture conditions were studied to improve the polymer production in sugarcane molasses. The highest HA production by S. zooepidemicus ATCC 39920 achieved was 2.825 g. L−1 in a 4.5 L bioreactor with controlled pH (8.0) and medium containing molasses (85.35 g.L−1 total sugar) pretreated with activated charcoal and yeast extract (50 g.L−1). The HA produced exhibited a high molecular weight of 1.35 × 103 kDa and the DPPH radical scavenging activity of the polymer at 1 g.L−1 was 41 %. The FTIR and UV-Vis spectra showed no substantial differences in the spectral pattern between produced and standard HA. This study is a promising strategy for sugarcane molasses application by producing high value-added products such as hyaluronic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 66(4), 341–351.

    Article  CAS  Google Scholar 

  2. Choi, J., Kim, J.-K., Kim, J.-H., Kweon, D.-K., & Lee, J.-W. (2010). Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment: a comparative study. Carbohydrate Polymers, 79(4), 1080–1085.

    Article  CAS  Google Scholar 

  3. Yu, C.-J., Ko, C.-J., Hsieh, C.-H., Chien, C.-T., Huang, L.-H., Lee, C.-W., & Jiang, C.-C. (2014). Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. Journal of Proteomics, 99, 40–53.

    Article  CAS  Google Scholar 

  4. Ong, K. L., Anderson, A. F., Niazi, F., Fierlinger, A. L., Kurtz, S. M., & Altman, R. D. (2016). Hyaluronic acid injections in medicare knee osteoarthritis patients are associated with longer time to knee arthroplasty. The Journal of Arthroplasty, 31(8), 1667–1673.

    Article  Google Scholar 

  5. Kretz, F. T. A., Limberger, I.-J., & Auffarth, G. U. (2014). Corneal endothelial cell coating during phacoemulsification using a new dispersive hyaluronic acid ophthalmic viscosurgical device. Journal of Cataract and Refractive Surgery, 40(11), 1879–1884.

    Article  Google Scholar 

  6. Stead, R. E., Juma, Z., Turner, S., Jones, L. D., & Sung, V. C. T. (2016). A novel use of reticulated hyaluronic acid (Healaflow) for hypotony eyes in patients with uveitis. British Journal of Ophthalmology, 100(6), 727–730.

    Article  CAS  Google Scholar 

  7. Su, Z., Ma, H., Wu, Z., Zeng, H., Li, Z., Wang, Y., Liu, G., Xu, B., Lin, Y., Zhang, P., & Wei, X. (2014). Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Materials Science and Engineering C, 44, 440–448.

    Article  CAS  Google Scholar 

  8. Wu, Z., Tang, Y., Fang, H., Su, Z., Xu, B., Lin, Y., Zhang, P., & Wei, X. (2015). Decellularized scaffolds containing hyaluronic acid and EGF for promoting the recovery of skin wounds. Journal of Materials Science: Materials in Medicine, 26(1), 1–10.

    Google Scholar 

  9. Wiest, L., & Kerscher, M. (2008). Native hyaluronic acid in dermatology – results of an expert meeting. Journal der Deutschen Dermatologischen Gesellschaft, 6(3), 176–180.

    Article  Google Scholar 

  10. Sundaram, H., Mackiewicz, N., Burton, E., Peno-Mazzarino, L., Lati, E., & Meunier, S. (2016). Pilot comparative study of the topical action of a novel, crosslinked resilient hyaluronic acid on skin hydration and barrier function in a dynamic, three-dimensional human explant model. Journal of Drugs in Dermatology, 15(4), 434–441.

    CAS  Google Scholar 

  11. Pires, A. M. B., Macedo, A. C., Eguchi, S. Y., & Santana, M. H. A. (2010). Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresource Technology, 101(16), 6506–6509.

    Article  CAS  Google Scholar 

  12. Yamada, T., & Kawasaki, T. (2005). Microbial synthesis of hyaluronan and chitin: new approaches. Journal of Bioscience and Bioengineering, 99(6), 521–528.

    Article  CAS  Google Scholar 

  13. Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories, 10, 99.

    Article  CAS  Google Scholar 

  14. Vázquez, J. A., Montemayor, M. I., Fraguas, J., & Murado, M. A. (2010). Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microbial Cell Factories, 9, 46.

    Article  Google Scholar 

  15. Pires, A. M. B., & Santana, M. H. A. (2010). Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid. Applied Biochemistry and Biotechnology, 162(6), 1751–1761.

    Article  CAS  Google Scholar 

  16. Shah, M. V., Badle, S. S., & Ramachandran, K. B. (2013). Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochemical Engineering Journal, 80, 53–60.

    Article  CAS  Google Scholar 

  17. Vázquez, J. A., Pastrana, L., Piñeiro, C., Teixeira, J. A., Pérez-Martín, R. I., & Amado, I. R. (2015). Production of hyaluronic acid by Streptococcus zooepidemicus on protein substrates obtained from Scyliorhinus canicula discards. Marine Drugs, 13(10), 6537–6549.

    Article  Google Scholar 

  18. Pan, N. C., Vignoli, J. A., Baldo, C., Pereira, H. C. B., Silva, R. S. S. F., & Celligoi, M. A. P. C. (2015). Agroindustrial byproducts for the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. International Journal of Scientific & Technology Research, 4(04), 114–118.

    Google Scholar 

  19. Oliveira, A. H., Ogrodowski, C. C., Macedo, A. C., Santana, M. H. A., & Gonçalves, L. R. B. (2013). Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production. Brazilian Journal of Microbiology, 44(4), 1097–1104.

    Article  Google Scholar 

  20. Amado, I. R., Vázquez, J. A., Pastrana, L., & Teixeira, J. A. (2016). Cheese whey: a cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry, 198, 54–61.

    Article  CAS  Google Scholar 

  21. UNICA (2016). Sugarcane, ethanol and sugar production - 2015/2016 harvest season. In Brazilian Sugarcane Industry Association - UNICA. Retrieved May 23, 2016, from http://www.unicadata.com.br

  22. Li, H., Jiang, Z., Yang, X., Yu, L., Zhang, G., Wu, J., & Liu, X. (2015). Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement. Journal of Cleaner Production, 93, 56–64.

    Article  Google Scholar 

  23. Xu, S., Hao, N., Xu, L., Liu, Z., Yan, M., Li, Y., & Ouyang, P. (2015). Series fermentation production of ornithine and succinic acid from cane molasses by Corynebacterium glutamicum. Biochemical Engineering Journal, 99, 177–182.

    Article  CAS  Google Scholar 

  24. Tyagi, N., & Suresh, S. (2016). Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. Journal of Cleaner Production, 112, 71–80.

    Article  CAS  Google Scholar 

  25. Ai, H., Liu, M., Yu, P., Zhang, S., Suo, Y., Luo, P., Li, S., & Wang, J. (2015). Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydrate Polymers, 129, 35–43.

    Article  CAS  Google Scholar 

  26. Ruiz, S. P., Martinez, C. O., Noce, A. S., Sampaio, A. R., Baesso, M. L., & Matioli, G. (2015). Biosynthesis of succinoglycan by Agrobacterium radiobacter NBRC 12665 immobilized on loofa sponge and cultivated in sugar cane molasses. Structural and rheological characterization of biopolymer. Journal of Molecular Catalysis B: Enzymatic, 122, 15–28.

    Article  CAS  Google Scholar 

  27. Oliveira, M. R., Silva, R. S. S. F., Buzato, J. B., & Celligoi, M. A. P. C. (2007). Study of Levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochemical Engineering Journal, 37(2), 177–183.

    Article  CAS  Google Scholar 

  28. Treichel, H., Mazutti, M. A., Maugeri Filho, F., & Rodrigues, M. I. (2009). Technical viability of the production, partial purification and characterisation of inulinase using pretreated agroindustrial residues. Bioprocess and Biosystems Engineering, 32(4), 425–433.

    Article  CAS  Google Scholar 

  29. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  30. Pan, N. C., Vignoli, J. A., Baldo, C., Pereira, H. C. B., Silva R. S. dos, S. F., & Celligoi, M. A. P. C (2015). Effect of fermentation conditions on the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. Acta Scientiarum. Biological Sciences, 37(4), 411–417.

    Article  Google Scholar 

  31. Pires, A. M. B., Eguchi, S. Y., & Santana, M. H. A. (2010). The influence of mineral ions on the microbial production and molecular weight of hyaluronic acid. Applied Biochemistry and Biotechnology, 162(8), 2125–2135.

    Article  CAS  Google Scholar 

  32. Tlapak-Simmons, V. L., Baron, C. A., & Weigel, P. H. (2004). Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry, 43(28), 9234–9242.

    Article  CAS  Google Scholar 

  33. Gomaa, E. Z. (2014). Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Brazilian Archives of Biology and Technology, 57(February), 145–154.

    Article  CAS  Google Scholar 

  34. Chong, B. F., & Nielsen, L. K. (2003). Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochemical Engineering Journal, 16(2), 153–162.

    Article  CAS  Google Scholar 

  35. Armstrong, D. C., & Johns, M. R. (1997). Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Applied and Environmental Microbiology, 63(7), 2759–2764.

    CAS  Google Scholar 

  36. Lai, Z.-W., Rahim, R. A., Ariff, A., & Mohamad, R. (2011). Medium formulation and impeller design on the biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. African Journal of Microbiology Research, 5(15), 2114–2123.

    CAS  Google Scholar 

  37. Im, J.-H., Song, J.-M., Kang, J.-H., & Kang, D.-J. (2009). Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach. Journal of Industrial Microbiology & Biotechnology, 36(11), 1337–1344.

    Article  CAS  Google Scholar 

  38. Amrane, A., & Prigent, Y. (1994). Lactic acid production from lactose in batch culture : analysis of the data with the help of a mathematical model; relevance for nitrogen source and preculture assessment. Applied Microbiology and Biotechnology, 40, 644–649.

    Article  CAS  Google Scholar 

  39. Haaland, P. D. (1989). Experimental design in biotechnology. (Marcell Dekker, Ed.). NY: CRC Press.

  40. Armstrong, D. C., Cooney, M. J., & Johns, M. R. (1997). Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Applied Microbiology and Biotechnology, 47(3), 309–312.

    Article  CAS  Google Scholar 

  41. Gao, H.-J., Du, G.-C., & Chen, J. (2006). Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus. World Journal of Microbiology and Biotechnology, 22(4), 399–408.

    Article  CAS  Google Scholar 

  42. Gamboa-Suasnavart, R. A., Marín-Palacio, L. D., Martínez-Sotelo, J. A., Espitia, C., Servín-González, L., Valdez-Cruz, N. A., & Trujillo-Roldán, M. A. (2013). Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. World Journal of Microbiology and Biotechnology, 29(8), 1421–1429.

    Article  CAS  Google Scholar 

  43. Izawa, N., Hanamizu, T., Sone, T., & Chiba, K. (2010). Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk. Journal of Bioscience and Bioengineering, 109(4), 356–360.

    Article  CAS  Google Scholar 

  44. Liu, L., Wang, M., Du, G., & Chen, J. (2008). Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Letters in Applied Microbiology, 46(3), 383–388.

    Article  CAS  Google Scholar 

  45. Sun, X., Wang, Z., Bi, Y., Wang, Y., & Liu, H. (2015). Genetic and functional characterization of the hyaluronate lyase HylB and the Beta-N-Acetylglucosaminidase HylZ in Streptococcus zooepidemicus. Current Microbiology, 70(1), 35–42.

    Article  CAS  Google Scholar 

  46. Rangaswamy, V., & Jain, D. (2008). An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus. Biotechnology Letters, 30(3), 493–496.

    Article  CAS  Google Scholar 

  47. Lai, Z.-W., Rahim, R. A., Ariff, A. B., & Mohamad, R. (2012). Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. Journal of Bioscience and Bioengineering, 114(3), 286–291.

    Article  CAS  Google Scholar 

  48. Jeong, E., Shim, W. Y., & Kim, J. H. (2014). Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 185, 28–36.

    Article  CAS  Google Scholar 

  49. Guillaumie, F., Furrer, P., Felt-Baeyens, O., Fuhlendorff, B. L., Nymand, S., Westh, P., Gurny, R., & Schwach-Abdellaoui, K. (2010). Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications. Journal of Biomedical Materials Research - Part A, 92(4), 1421–1430.

    Google Scholar 

  50. Gilli, R., Kacuráková, M., Mathlouthi, M., Navarini, L., & Paoletti, S. (1994). FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydrate Research, 263(2), 315–326.

    Article  CAS  Google Scholar 

  51. Wu, Y. (2012). Preparation of low-molecular-weight hyaluronic acid by ozone treatment. Carbohydrate Polymers, 89(2), 709–712.

    Article  CAS  Google Scholar 

  52. El-Safory, N. S., & Lee, C.-K. (2010). Cytotoxic and antioxidant effects of unsaturated hyaluronic acid oligomers. Carbohydrate Polymers, 82(4), 1116–1123.

    Article  CAS  Google Scholar 

  53. Kim, J. K., Srinivasan, P., Kim, J. H., Choi, J., Park, H. J., Byun, M. W., & Lee, J. W. (2008). Structural and antioxidant properties of gamma irradiated hyaluronic acid. Food Chemistry, 109(4), 763–770.

    Article  CAS  Google Scholar 

  54. Ke, C., Sun, L., Qiao, D., Wang, D., & Zeng, X. (2011). Antioxidant acitivity of low molecular weight hyaluronic acid. Food and Chemical Toxicology, 49(10), 2670–2675.

    Article  CAS  Google Scholar 

  55. Campo, G. M., Avenoso, A., Campo, S., D’Ascola, A., Ferlazzo, A. M., & Calatroni, A. (2004). The antioxidant and antifibrogenic effects of the glycosaminoglycans hyaluronic acid and chondroitin-4-sulphate in a subchronic rat model of carbon tetrachloride-induced liver fibrogenesis. Chemico-Biological Interactions, 148(3), 125–138.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordination for the Improvement of Higher Education Personnel (CAPES – Brazil) for financial support, Dr. Dionisio Borsato from Londrina State University for support with the statistical analysis, and the Laboratory of Spectroscopy (SPEC) – State University of Londrina for the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonia Pedrine Colabone Celligoi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, N.C., Pereira, H.C.B., da Silva, M.d.L.C. et al. Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses. Appl Biochem Biotechnol 182, 276–293 (2017). https://doi.org/10.1007/s12010-016-2326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2326-y

Keywords

Navigation