Skip to main content
Log in

Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The investigation for the first time assesses the efficacy of recycled de-oiled algal biomass extract (DABE) as a cultivation media to boost lipid productivity in Chlorella minutissima and its comparison with Bold’s basal media (BBM) used as control. Presence of organic carbon (3.8 ± 0.8 g/l) in recycled DABE resulted in rapid growth with twofold increase in biomass productivity as compared to BBM. These cells expressed four folds higher lipid productivity (126 ± 5.54 mg/l/d) as compared to BBM. Cells cultivated in recycled DABE showed large sized lipid droplets accumulating 54.12 % of lipid content. Decrement in carbohydrate (17.76 %) and protein content (28.12 %) with loss of photosynthetic pigments compared to BBM grown cells were also recorded. The fatty acid profiles of cells cultivated in recycled DABE revealed the dominance of C16:0 (39.66 %), C18:1 (29.41 %) and C18:0 (15.82 %), respectively. This model is self-sustained and aims at neutralizing excessive feedstock consumption by exploiting recycled de-oiled algal biomass for cultivation of microalgae, making the process cost effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen, Y. H., & Walker, T. H. (2011). Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 33, 1973–1983. doi:10.1007/s10529-011-0672-y.

    Article  CAS  Google Scholar 

  2. Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016b). Boosting TAG accumulation with improved biodiesel production from novel oleaginous microalgae Scenedesmus sp. IITRIND2 utilizing waste sugarcane bagasse aqueous extract (SBAE). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2086-8.

    Google Scholar 

  3. Rashid, N., Rehman, M. S. U., Han, J. I. (2013). Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochemical Engineering Journal, 75, 101–107. doi:10.1016/j.bej.2013.04.001

  4. Gao, M. T., Shimamura, T., Ishida, N., & Takahashi, H. (2012). Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. Journal of Bioscience and Bioengineering, 114(3), 330–333. doi:10.1016/j.jbiosc.2012.04.002.

    Article  CAS  Google Scholar 

  5. Venkata Subhash, G., & Venkata Mohan, S. (2014). Deoiled algal cake as feedstock for dark fermentative biohydrogen production: an integrated biorefinery approach. International Journal of Hydrogen Energy, 39(18), 9573–9579. doi:10.1016/j.ijhydene.2014.04.003.

    Article  CAS  Google Scholar 

  6. Ju, Z. Y., Deng, D. F., & Dominy, W. (2012). A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture , 50–55. doi:10.1016/j.aquaculture.2012.04.028.354-355

  7. Maurya, R., Ghosh, T., Paliwal, C., Shrivastav, A., Chokshi, K., Pancha, I., & Mishra, S. (2014). Biosorption of methylene blue by de-oiled algal biomass: equilibrium, kinetics and artificial neural network modelling. PloS One, 9(10), 1–13. doi:10.1371/journal.pone.0109545.

    Article  Google Scholar 

  8. Barbera, E., Sforza, E., Kumar, S., Morosinotto, T., & Bertucco, A. (2016). Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling. Bioresource Technology, 207, 59–66. doi:10.1016/j.biortech.2016.01.103.

    Article  CAS  Google Scholar 

  9. Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016a). Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, 213, 79–97. doi:10.1016/j.biortech.2016.02.112.

    Article  CAS  Google Scholar 

  10. Dubois, M., Gilles, K. A., Ton, J. K. H., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. doi:10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  11. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. doi:10.1016/0076-6879(87)48036-1.

    Article  CAS  Google Scholar 

  12. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. doi:10.1016/j.apenergy.2010.12.064.

    Article  CAS  Google Scholar 

  13. Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61–66.

    Article  CAS  Google Scholar 

  14. Mitra, D., van Leeuwen, J. H., & Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40–48. doi:10.1016/j.algal.2012.03.002.

    Article  CAS  Google Scholar 

  15. Zheng, H., Gao, Z., Yin, F., Ji, X., & Huang, H. (2012). Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Bioresource Technology, 117, 1–6. doi:10.1016/j.biortech.2012.04.007.

    Article  CAS  Google Scholar 

  16. Park, W.-K., Moon, M., Kwak, M. S., Jeon, S., Choi, G.-G., Yang, J.-W., & Lee, B. (2014). Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris increased production of biomass and FAMEs. Bioresource Technology, 171, 343–349. doi:10.1016/j.biortech.2014.08.109.

    Article  CAS  Google Scholar 

  17. Malla, F. A., Khan, S. A., Rashmi, Sharma, G. K., Gupta, N., & Abraham, G. (2015). Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecological Engineering, 75, 343–349. doi:10.1016/j.ecoleng.2014.11.038.

    Article  Google Scholar 

  18. Kong, W. B., Yang, H., Cao, Y. T., Song, H., Hua, S. F., & Xia, C. G. (2013). Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology, 51(1), 62–69.

    CAS  Google Scholar 

  19. Lv, J. M., Cheng, L. H., Xu, X. H., Zhang, L., & Chen, H. L. (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101(17), 6797–6804. doi:10.1016/j.biortech.2010.03.120.

    Article  CAS  Google Scholar 

  20. Zhang, Y. M., Chen, H., He, C. L., & Wang, Q. (2013). Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PloS One, 8(7), 1–12. doi:10.1371/journal.pone.0069225.

    CAS  Google Scholar 

  21. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2014). Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresource Technology, 168, 142–150. doi:10.1016/j.biortech.2014.03.130.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support by the Department of Biotechnology, Govt. of India for BioCare Programme, DBT Sanction No. 102/IFD/SAN/3539/2011-2012 (Grant No. DBT-608-BIO), JRF to Neha Arora (Grant No. 7001-35-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Pruthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Patel, A., Pruthi, P.A. et al. Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima . Appl Biochem Biotechnol 180, 1534–1541 (2016). https://doi.org/10.1007/s12010-016-2185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2185-6

Keywords

Navigation