Skip to main content

Advertisement

Log in

Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))−1 after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)−1 when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day−1. The average daily biogas yield was 230.2 mL (g VS)−1 and 208.4 mL (g VS)−1. The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Álvarez, J. A., Otero, L., & Lema, J. M. (2010). A methodology for optimizing feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource Technology, 101, 1153–1158.

    Article  Google Scholar 

  2. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable Sustainable Energy Reviews, 16, 1462–1476.

    Article  CAS  Google Scholar 

  3. Xiao, K., Guo, C., Zhou, Y., Maspolim, Y., Wang, J., & Ng, W. J. (2013). Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochemical Engineering Journal, 75, 1–7.

    Article  CAS  Google Scholar 

  4. Buyukkamaci, N., & Filibeli, A. (2004). Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochemistry, 39, 1491–1494.

    Article  CAS  Google Scholar 

  5. Kim, I. S., Hwang, M. H., Jang, N. J., Hyun, S. H., & Lee, S. (2004). Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. International Journal of Hydrogen Energy, 29, 1133–1140.

    CAS  Google Scholar 

  6. Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., & Stams, A. J. M. (2011). Biomethanation and its potential. Methods in Enzymology, 494, 327–371.

    Article  CAS  Google Scholar 

  7. Hartmann, H., & Ahring, B. K. (2005). Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Research, 39, 1543–1552.

    Article  CAS  Google Scholar 

  8. Li, R., Chen, S., Li, X., Lar, J. S., He, Y., & Zhu, B. (2009). Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy and Fuels, 23, 2225–2228.

    Article  CAS  Google Scholar 

  9. Fierro, J., Martínez, E. J., Morán, A., & Gómez, X. (2014). Valorisation of used cooking oil sludge by codigestion with swine manure. Waste Management, 34, 1537–1545.

    Article  CAS  Google Scholar 

  10. Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15, 821–826.

    Article  CAS  Google Scholar 

  11. Hu, Z., Yu, H., Yue, Z., Harada, H., & Li, Y. (2007). Kinetic analysis of anaerobic digestion of cattail by rumen microbes in a modified UASB reactor. Biochemical Engineering Journal, 37, 219–225.

    Article  CAS  Google Scholar 

  12. Cuetos, M. J., Fernández, C., Gómez, X., & Morán, A. (2011). Anaerobic co-digestion of swine manure with energy crop residues. Biotechnology and Bioprocess Engineering, 16, 1044–1052.

    Article  CAS  Google Scholar 

  13. Panichnumsin, P., Nopharatana, A., Ahring, B., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of swine manure. Biomass and Bioenergy, 34, 1117–1124.

    Article  CAS  Google Scholar 

  14. Wang, Q., Peng, L., & Su, H. (2013). The effect of a buffer function on the semi-continuous anaerobic digestion. Bioresource Technology, 139, 43–49.

    Article  CAS  Google Scholar 

  15. Cuetos, M. J., Gómez, X., Otero, M., & Morán, A. (2010). Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield. Waste Management, 30, 1780–1789.

    Article  CAS  Google Scholar 

  16. Mata-Alvarez, J., Dosta, J., Macé, S., & Astals, S. (2011). Codigestion of solid wastes: a review of its uses and perspectives including modeling. Critical Rev in Biotechnology, 31(2), 99–111.

    Article  CAS  Google Scholar 

  17. APHA. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  18. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

  19. Kaczala, F., Marques, M., & Hogland, W. (2010). Biotreatability of wastewater generated during machinery washing in a wood-based industry: COD, formaldehyde and nitrogen removal. Bioresource Technology, 101(23), 8975–8983.

    Article  CAS  Google Scholar 

  20. Liao, W., Liu, Y., Liu, C., & Chen, S. (2004). Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material--dairy manure. Bioresource Technology, 94(1), 33–41.

    Article  CAS  Google Scholar 

  21. Kayhanian, M. (1999). Ammonia inhibition in high solid biogasification: an overview and practical solution. Environmental Technology, 20, 355–365.

    Article  CAS  Google Scholar 

  22. Sensai, P., Thangamani, A., & Visvanathan, C. (2014). Thermophilic co-digestion feasibility of distillers grains and swine manure: effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD). Environmental Technology, 35(20), 2569–2574.

    Article  CAS  Google Scholar 

  23. Fernández, J., Pérez, M., & Romero, L. I. (2008). Effect of substrate concentration on drymesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresource Technology, 99(14), 6075–6080.

    Article  Google Scholar 

  24. LeHyaric, R., Chardin, C., Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., & Buffiére, P. (2011). Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresource Technology, 102(2), 822–827.

    Article  CAS  Google Scholar 

  25. Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J. P., Steyer, J. P., & Escudié, R. (2012). Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource Technology, 111, 55–61.

    Article  CAS  Google Scholar 

  26. Motte, J. C., Trably, E., Escudié, R., Hamelin, J., Steyer, J. P., Bernet, N., Delgenes, J. P., & Dumas, C. (2013). Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 6, 164–172.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Hi-Tech Research and Development Program of China (863 Program, 2012AA021401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wangliang or Xu Guangwen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wangliang, L., Zhikai, Z. & Guangwen, X. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure. Appl Biochem Biotechnol 179, 270–282 (2016). https://doi.org/10.1007/s12010-016-1992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1992-0

Keywords

Navigation