Skip to main content
Log in

In Vitro Release Kinetics and Transferrin Saturation Study of Intravenous Iron Sucrose Entrapped in Poly(ethylene glycol)-Assisted Silica Xerogel

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The presence of labile iron fractions in intravenous iron supplements compromises their safety. Poly(ethylene glycol) (PEG)-assisted silica xerogel was evaluated as a potential drug carrier for iron sucrose with the purpose of limiting labile iron available for in vitro uptake by transferrin. The drug entrapped xerogels were synthesized by the sol–gel process with varying amounts of PEG. In vitro release studies were conducted in simulated body fluid (SBF) at 37 ± 0.02 °C (pH 7.4). The results indicated that the cumulative release percentage increased with the increase in the amount of PEG in the matrix. The biphasic release profile followed first-order kinetics for the first 6 h and Higuchi model for the remaining time (up to 168 h). The sample showing highest percentage of cumulative release (the xerogel with 16 % PEG) was used for in vitro transferrin saturation studies in contrast with the plain drug. The xerogel formulation exhibited 7.25 ± 0.4 % transferrin saturation in 180 min as compared to 12.89 ± 0.2 % for the raw drug. These results indicate that encapsulation of iron sucrose in PEG-assisted silica xerogel and subsequent sustained release from the matrix can improve the safety of the drug when presence of labile iron is a major concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Camaschella, C., & Strati, P. (2010). Recent advances in iron metabolism and related disorders. Internal and Emergency Medicine, 5, 393–400.

    Article  Google Scholar 

  2. Johnson-Wimbley, T. D., & Graham, D. Y. (2011). Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic Advances in Gastroenterology, 4, 177–184.

    Article  Google Scholar 

  3. Coe, E. M., Bowen, L. H., Speer, J. A., & Bereman, R. D. (1995). Comparison of polysaccharide iron complexes used as iron supplements. Journal of Inorganic Biochemistry, 57, 287–292.

    Article  CAS  Google Scholar 

  4. J.M Ritter, L.D Lewis, T.G. K. Mant and A. Ferro (2008). A Textbook of Clinical Pharmacology and Therapeutics, fifth ed., Hodder Arnold, Great Britain

  5. Wyck, D. V., Anderson, J., & Johnson, K. (2004). Labile iron in parenteral iron formulations: a quantitative and comparative study. Nephrology, Dialysis, Transplantation, 19, 561–565.

    Article  Google Scholar 

  6. Zager, R. A., Johnson, A. C., Hanson, S. Y., & Wasse, H. (2002). Parenteral iron formulations: a comparative toxicologic analysis and mechanisms of cell injury. American Journal of Kidney Diseases, 40, 90–103.

    Article  CAS  Google Scholar 

  7. Esposito, B. P., Breuer, W., Slotki, I., & Cabantchik, Z. I. (2002). Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin-bound iron in dialysis patients. European Journal of Clinical Investigation, 32, 42–49.

    Article  CAS  Google Scholar 

  8. Deicher, R., Ziai, F., Cohen, G., Mullner, M., & Horl, W. H. (2003). High-dose parenteral iron sucrose depresses neutrophil intracellular killing capacity. Kidney International, 64, 728–736.

    Article  CAS  Google Scholar 

  9. Parkkinen, J., von Bonsdorff, L., Peltonen, S., Gronhagen-Riska, C., & Rosenlof, K. (2000). Catalytically active iron and bacterial growth in serum of haemodialysis patients after i.v. iron-saccharate administration. Nephrology, Dialysis, Transplantation, 15, 1827–1834.

    Article  CAS  Google Scholar 

  10. Agarwal, R. (2004). Transferrin saturation with intravenous irons: an in vitro study. Kidney International, 66, 1139–1144.

    Article  CAS  Google Scholar 

  11. Radina, S., Falaizea, S., Leea, M. H., & Ducheyne, P. (2002). In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials, 23, 3113–3122.

    Article  Google Scholar 

  12. Viitala, R., Jokinen, M., Maunu, S. L., Jalonen, H., & Rosenholm, J. B. (2005). Chemical characterization of bioresorbable sol–gel derived SiO2 matrices prepared at protein-compatible pH. Journal of Non-Crystalline Solids, 351, 3225–3245.

  13. Radin, S., El-Bassyouni, G., Vresilovic, E. J., Schepers, E., & Ducheyne, P. (2005). In vivo tissue response to resorbable silica xerogels as controlled release materials. Biomaterials, 26, 1043–1052.

    Article  CAS  Google Scholar 

  14. Barbe, C., Bartlett, J., Kong, L. G., Finnie, K., Lin, H. Q., Larkin, M., Calleja, S., Bush, A., & Calleja, G. (2004). Silica particles: a novel drug-delivery system. Advanced Materials, 16, 1959–1966.

    Article  CAS  Google Scholar 

  15. Prokopowicz, M., & Łukasiak, J. (2010). Synthesis and in vitro characterization of freeze-dried doxorubicin-loaded silica/PEG composite. Journal of Non-Crystalline Solids, 356, 1711–1720.

    Article  CAS  Google Scholar 

  16. Brinker, C. J., Scherer, G. W., & Sol–Gel Science. (1990). The physics and chemistry of sol–gel processing. San Diego, CA: Academic Press.

    Google Scholar 

  17. Alfieri, I. (2010). Sol–gel silicon alkoxides-polyethylene glycol derived hybrids for drug delivery systems. Jouran Applied Biomaterials Biomedical, 8, 14–19.

  18. Giray, S., Bal, T., Kartal, A. M., Kızılel, S., & Erkey, C. (2012). Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. Journal of Biomedical Materials Research. Part A, 100, 1307–1315.

  19. Branda, F., Silvestri, B., Luciani, G., Costantini, A., & Tescione, F. (2010). Synthesis structure and stability of amino functionalized PEGylated silica nanoparticles. Colloids and Surfaces A: Physicochemical Engeerig Aspects, 367, 12–16.

    Article  CAS  Google Scholar 

  20. Gaetano, F. D., Ambrosio, L., Raucci, M. G., Marotta, A., & Catauro, M. (2005). Sol–gel processing of drug delivery materials and release kinetics. Journal of Materials Science. Materials in Medicine, 16, 261–265.

    Article  CAS  Google Scholar 

  21. Chakraborty, S., Biswas, S., Sa, B., Das, S., & Dey, R. (2014). In vitro & in vivo correlation of release behavior of andrographolide from silica and PEG assisted silica gel matrix. Colloids and Surfaces A: Physicochemical Engeering Aspects, 455, 111–121.

    Article  CAS  Google Scholar 

  22. Kokubo, T. (1991). Bioactive glass ceramics: properties and applications. Biomaterials, 12, 155–163.

    Article  CAS  Google Scholar 

  23. Barot, B. S., Parejiya, P. B., Mehta, D. M., Shelat, P. K., & Shah, G. B. (2014). Physicochemical and structural characterization of iron–sucrose formulations: a comparative study. Pharmaceutical Development and Technology, 19, 513–520.

    Article  CAS  Google Scholar 

  24. Singh, N. K., Singh, S. K., Dash, D., Das, P., Roy, B. P., & Maiti, J. K. (2012). Nanostructure controlled anti-cancer drug delivery using poly (ε-caprolactone) based nanohybrids. Journal of Materials Chemistry, 22, 17853–17863.

    Article  CAS  Google Scholar 

  25. Albarran, L., Lopeza, T., Quintanac, P., & Chagoyad, V. (2011). Controlled release of IFC-305 encapsulated in silica nanoparticles for liver cancer synthesized by sol–gel. Colloid Surfaces A, 384, 131–136.

    Article  CAS  Google Scholar 

  26. Chakraborty, S., Mitra, M. K., Chaudhuri, M. G., Sa, B., Das, S., & Dey, R. (2012). Study of the release mechanism of Terminalia chebula extract from nanoporous silica gel. Applied Biochemistry and Biotechnology, 168, 2043–2056.

    Article  CAS  Google Scholar 

  27. Radin, S., Chen, T., & Ducheyne, P. (2009). The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials, 30, 850–858.

  28. Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13, 123–133.

    Article  CAS  Google Scholar 

  29. Mulye, N. V., & Turco, S. J. (1995). A simple model based on first order kinetics to explain release of highly water soluble drugs from porous dicalcium phosphate dihydrate matrices. Drug Development and Industrial Pharmacy, 21, 943–953.

    Article  CAS  Google Scholar 

  30. Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48, 139–157.

    Article  CAS  Google Scholar 

  31. Turcot, I., Stintzi, A., Xu, J., & Raymond, K. N. (2000). Fast biological iron chelators: kinetics of iron removal from human diferric transferrin by multidentate hydroxypyridonates. Journal of Biological Inorganic Chemistry, 5, 634–641.

    Article  CAS  Google Scholar 

  32. James, N. G., & Mason, A. B. (2008). Protocol to determine accurate absorption coefficients for iron-containing transferrins. Analytical Biochemistry, 378, 202–207.

    Article  CAS  Google Scholar 

  33. Brizuela, A. B., Bichara, L. C., Romano, E., Yurquina, A., & Locatelli, S. (2012). A complete characterization of the vibrational spectra of sucrose, 2012. Carbohydrate Research, 361, 212–218.

  34. Innocenzi, P. (2003). Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. Journal of Non-Crystalline Solids, 316, 309–319.

  35. Gopal, N. O., Narasimhulu, K. V., & Rao, J. L. (2004). EPR, optical, infrared and Raman spectral studies of Actinolite mineral. Spectrochimica Acta, Part A, 60, 2441–2448.

    Article  CAS  Google Scholar 

  36. Duran, A., Fernandez-Navarro, J. M., Casariego, P., & Joglar, A. (1986). Optical properties of glass coatings containing Fe and Co. Journal of Non-Crystalline Solids, 82, 391–399.

    Article  CAS  Google Scholar 

  37. Bertoluzza, A., Fagnano, C., Morelli, M. A., Gottardi, V., & Guglielmi, M. (1982). Raman and infrared spectra on silica gel evolving toward glass. Journal of Non-Crystalline Solids, 48, 117–128.

    Article  CAS  Google Scholar 

  38. Vadia, N., & Rajput, S. (2012). Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. European Journal of Pharmaceutical Sciences, 45, 8–18.

  39. Czarnobaj, K., & Łukasiak, J. (2007). In-vitro release of cisplatin from sol–gel processed organically modified silica xerogels. Journal of Materials Science. Materials in Medicine, 18, 2041–2044.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahnavi Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, J., Chakraborty, S., Chaudhuri, M.G. et al. In Vitro Release Kinetics and Transferrin Saturation Study of Intravenous Iron Sucrose Entrapped in Poly(ethylene glycol)-Assisted Silica Xerogel. Appl Biochem Biotechnol 178, 1351–1362 (2016). https://doi.org/10.1007/s12010-015-1951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1951-1

Keywords

Navigation