Skip to main content

Advertisement

Log in

Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Monodispersed cerium oxide nanoparticle has been synthesized by microwave-mediated hydrothermal as well as microwave-mediated solvothermal synthesis. X-ray diffraction (XRD) data shows that the synthesized particles are single phase. SEM and TEM analysis suggest that particle synthesized by microwave-mediated solvothermal method are less agglomerated. In vitro toxicology study of the synthesized nanoceria particles has shown good free radical scavenging activity for NO and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assayed except superoxide radical within a concentration range of 25 to 75 ng ml−1. Nanoceria particle also showed inhibition of Fe-ascorbate-induced lipid peroxidation (LPx) in chick liver mitochondrial fractions. Solvothermally synthesized nanoceria showed better protection against Fe-ascorbate-induced LPx than the hydrothermal one while the hydrothermally synthesized nanoceria showed better DPPH and NO scavenging activity. The ceria nanoparticles also prevented Fe-ascorbate-H2O2-induced carbonylation of bovine serum albumin in a dose-dependent manner. At higher concentration, i.e., 100 ng ml−1, the synthesized nanoparticles showed a reverse trend in all the parameters measured indicating its toxicity at higher doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research, 34(4), 257–264.

    Article  CAS  Google Scholar 

  2. Chen, S., & Yang, Y. (2002). Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. Journal of the American Chemical Society, 124(19), 5280–5281.

    Article  CAS  Google Scholar 

  3. Lewis, L. N. (1993). Chemical catalysis by colloids and clusters. Chemical Reviews, 93(8), 2693–2730.

    Article  CAS  Google Scholar 

  4. Chen, M. S., & Goodman, D. W. (2004). The structure of catalytically active gold on titania. Science, 306, 252–255.

    Article  CAS  Google Scholar 

  5. Kim, S. W., Kim, M., Lee, W. Y., & Hyeon, T. (2002). Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. Journal of the American Chemical Society, 124(26), 7642–7643.

    Article  CAS  Google Scholar 

  6. Chen, H. M., Chen, C. K., Chang, Y. C., Tsai, C. W., Liu, R. S., Hu, S. F., Chang, W. S., & Chen, K. H. (2010). Monolayer-quantum dots sensitized zno nanowires-array photoelectrodes: true efficiency for water splitting. Angewandte Chemie International Edition, 49(34), 5966–5969.

    Article  CAS  Google Scholar 

  7. Sinha, A. K., Seelan, S., Tsubota, S., & Haruta, M. A. (2004). A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion. Angewandte Chemie International Edition, 43(12), 1546–1548.

    Article  CAS  Google Scholar 

  8. Valden, M., Lai, X., & Goodman, D. W. (1998). Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281(5383), 1647–1650.

    Article  CAS  Google Scholar 

  9. Zhou, S., Mcllwrath, K., Jackson, G., & Eichhorn, B. (2006). Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. Journal of the American Chemical Society, 128(6), 1780–1781.

    Article  CAS  Google Scholar 

  10. Peyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103–106.

    Article  CAS  Google Scholar 

  11. Chen, H. M., Liu, R. S., Li, H., & Zeng, H. C. (2006). Generating isotropic superparamagnetic interconnectivity for the two-dimensional organization of nanostructured building blocks. Angewandte Chemie International Edition, 45(17), 2713–2717.

    Article  CAS  Google Scholar 

  12. Charles Cao, Y. W., Jin, R., & Mirkin, C. A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297(5586), 1536–1540.

    Article  Google Scholar 

  13. Taton, T. A., Mirkin, C. A., & Letsinger, R. L. (2000). Scanometric DNA array detection with nanoparticle probes. Science, 289(5485), 1757–1760.

    Article  CAS  Google Scholar 

  14. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277(5329), 1078–1081.

    Article  CAS  Google Scholar 

  15. Park, S. J., Taton, T. A., & Mirkin, C. A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science, 295(5559), 1503–1506.

    CAS  Google Scholar 

  16. Kamat, P. V. (2002). Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 106(32), 7729–7744.

    Article  CAS  Google Scholar 

  17. Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 312(5776), 1027–1030.

    Article  CAS  Google Scholar 

  18. Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science, 275(5303), 1102–1106.

    Article  CAS  Google Scholar 

  19. Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.

    Article  CAS  Google Scholar 

  20. Warheit, D. B., Webb, T. R., Reed, K. L., Frerichs, S., & Sayes, C. M. (2007). Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology, 230(1), 90–104.

    Article  CAS  Google Scholar 

  21. Limbach, L. K., Li, Y., Grass, R. N., Brunner, T. J., Hintermann, M. A., Muller, M., Gunther, D., & Stark, W. J. (2005). Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 39(23), 9370–9376.

    Article  CAS  Google Scholar 

  22. Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, 14(10), 1056–1058.

    Article  Google Scholar 

  23. Heckert, E. G., Karakoti, A. S., Seal, S., & Self, W. T. (2008). The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 29(18), 2705–2709.

    Article  CAS  Google Scholar 

  24. Robinson, R. D., Spanier, J. E., Zhang, F., Chan, S.-W., & Herman, I. P. (2002). Visible thermal emission from sub-band-gap laser excited cerium dioxide particles. Journal of Applied Physics, 92(4), 1936–1941.

    Article  CAS  Google Scholar 

  25. Deshpande, S., Patil, S., Kuchibhatla, S. V. N. T., & Seal, S. (2005). Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters, 87(13), 133113:1–3.

    Article  Google Scholar 

  26. Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G., & Rosei, R. (2005). Electron localization determines defect formation on ceria substrates. Science, 309(5735), 752–755.

    Article  CAS  Google Scholar 

  27. Chen, J., Patil, S., Seal, S., & McGinnis, J. F. (2006). Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nature Nanotechnology, 1(2), 142–150.

    Article  CAS  Google Scholar 

  28. Karakoti, A. S., Singh, S., Kumar, A., Malinska, M., Kuchibhatla, S. V. N. T., Wozniak, K., Self, W. T., & Seal, S. (2009). PEGylated nanoceria as radical scavenger with tunable redox chemistry. Journal of the American Chemical Society, 131(40), 14144–14145.

    Article  CAS  Google Scholar 

  29. Pirmohamed, T., Dowding, J. M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A. S., King, J. E., Seal, S., & Self, W. T. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 46(16), 2736–2738.

    Article  CAS  Google Scholar 

  30. Celardo, I., Pedersen, J. Z., Traversa, E., & Ghibelli, L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 3(4), 1411–1420.

    Article  CAS  Google Scholar 

  31. Perez, J. M., Asati, A., Nath, S., & Kaittanis, C. (2008). Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small, 4(5), 552–556.

    Article  CAS  Google Scholar 

  32. Hirst, S. M., Karakoti, A., Singh, S., Self, W., Tyler, R., Seal, S., & Reilly, C. M. (2013). Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environmental Toxicology, 28(2), 107–118.

    Article  CAS  Google Scholar 

  33. Cai, X., Seal, S., & McGinnis, J. F. (2014). Sustained inhibition of neovascularization in vldlr −/− mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials, 35(1), 249–258.

    Article  CAS  Google Scholar 

  34. Das, S., Singh, S., Dowding, J. M., Oommen, S., Kumar, A., Sayle, T. X. T., Saraf, S., Patra, C. R., Vlahakis, N. E., Sayle, D. C., Self, W. T., & Seal, S. (2012). The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials, 33(31), 7746–7755.

    Article  CAS  Google Scholar 

  35. Zheng, F., Jin, Q., & Chen, S. W. (2004). Ceria nanoparticles: size, size distribution, and shape. Journal of Applied Physics, 95(8), 4319–4323.

    Article  Google Scholar 

  36. Czerwinski, F., & Szpunar, J. A. (1997). The nanocrystalline ceria sol-gel coatings for high temperature applications. Journal of Sol-Gel Science and Technology, 9(1), 103–114.

    CAS  Google Scholar 

  37. Wang, Z. L., & Feng, X. (2003). Polyhedral shapes of CeO2 nanoparticles. The Journal of Physical Chemistry B, 107(49), 13563–13566.

    Article  CAS  Google Scholar 

  38. Zhitomirsky, I., & Petric, A. (2001). Electrochemical deposition of ceria and doped ceria Films. Ceramics International, 27(2), 149–155.

    Article  CAS  Google Scholar 

  39. Satyamurthy, S., Leonard, K. J., Dabestani, R. T., & Paranthaman, M. P. (2005). Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology, 16(9), 1960–1964.

    Article  Google Scholar 

  40. Sakthivel, T., Das, S., Kumar, A., Reid, D. L., Gupta, A., Sayle, D. C., & Seal, S. (2013). Morphological phase diagram of biocatalytically active ceria nanostructures as a function of processing variables and their properties. ChemPlusChem, 78(12), 1446–1455.

    Article  CAS  Google Scholar 

  41. Araujo, V. D., Avansi, W., de Carvalho, H. B., Moreira, M. L., Longo, E., Ribeiro, C., & Bernardi, M. I. B. (2012). CeO2 nanoparticles synthesized by a microwave assisted hydrotrhermal method:evolution from nanosphere to nanorod. Crystal Engineering Communications, 14(3), 1150–1154.

    Article  CAS  Google Scholar 

  42. Das, K., Samanta, L., & Chainy, G. B. N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formations by superoxide radicals. Indian Journal of Biochemistry and Biophysics, 37(3), 201–204.

    CAS  Google Scholar 

  43. Garrat, D. C. (1964). “In: The quantitative analysis of drug” Chapman and Hall. Japan, 3, 456–458.

    Google Scholar 

  44. Samanta, L., & Chainy, G. B. N. (1997). Comparison of hexa chloro cyclohexane-induced oxidative stress in the testis of immature and adult rats—general considerations. Comparative Biochemistry and Physiology, 118C(3), 319–327.

    CAS  Google Scholar 

  45. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    Article  CAS  Google Scholar 

  46. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Methods in Enzymology, 186, 464–478.

    Article  CAS  Google Scholar 

  47. Fridovich, I. (1986). Oxygen Radicals, Hydrogen peroxide and oxygen toxicity. Free Radicals and Biology. Pryor, W. A. New York, AcademicPress., 1, 239-246.

  48. Denicola, A., Souza, J. M., & Radi, R. (1998). Diffusion of peroxynitrite across erythrocyte membranes. Proceedings of the National Academy of Science, 95(7), 3566–3571.

    Article  CAS  Google Scholar 

  49. Marla, S. S., Lee, J., & Groves, J. T. (1997). Peroxynitrite rapidly permeates phospholipid membranes. Proceedings of the National Academy of Science, 94(26), 14243–14248.

    Article  CAS  Google Scholar 

  50. Moncada, S., Palmer, R. M., & Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharma Review, 43(2), 109–142.

    CAS  Google Scholar 

  51. Tylor, B. S., Kion, Y. M., Wang, Q. I., Sharpio, R. A., Billiar, T. R., & Geller, D. A. (1997). Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression. Archives of Surgery, 132, 1177–1183.

    Article  Google Scholar 

  52. Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329(1-2), 23–38.

    Article  CAS  Google Scholar 

  53. Madian, A. G., & Regnier, F. E. (2010). Proteomic identification of carbonylated proteins and their oxidation sites. Journal of Proteome Research, 9(8), 3766–3780.

    Article  CAS  Google Scholar 

  54. Rao, R. S. P., & Moller, I. M. (2011). Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics, 11(21), 4166–4173.

    Article  CAS  Google Scholar 

  55. Stadtaman, E. R., & Levine, R. L. (2000). Protein oxidation. Annals of the New York Academy of Sciences, 899, 191–208.

    Article  Google Scholar 

  56. Pignatelli, B., Li, C. Q., Boffetta, P., Chen, Q., Ahrens, W., Nyberg, F., Mukeria, A., Bruske-Hohlfeld, I., Fortes, C., Constantinescu, V., Ischiropoulos, H., & Ohshima, H. (2001). Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Research, 61(2), 778–784.

    CAS  Google Scholar 

  57. Yilmaz, I. A., Akçay, T., Cakatay, U., Telci, A., Ataus, S., & Yalçin, V. (2003). Relation between bladder cancer and protein oxidation. International Urology and Nephrology, 35(3), 345–350.

    Article  Google Scholar 

  58. Rossner, P., Jr., Terry, M. B., Gammon, M. D., Agrawal, M., Zhang, F. F., Ferris, J. S., Teitelbaum, S. L., Eng, S. M., Gaudet, M. M., Neugut, A. I., & Santella, R. M. (2007). Plasma protein carbonyl levels and breast cancer risk. Journal of Cellular and Molecular Medicine, 11(5), 1138–1148.

    Article  CAS  Google Scholar 

  59. Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., & Milzani, A. (2006). Protein carbonylation, cellular dysfunction and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389–406.

    Article  CAS  Google Scholar 

  60. Lin, W., Huang, Y. W., Zhou, X. D., & Ma, Y. (2006). Toxicity of cerium oxide nanoparticles in human lung cancer cells. International Journal of Toxicology, 25(6), 451–457.

    Article  CAS  Google Scholar 

  61. Babu, S., Velez, A., Wozniak, K., Szydlowska, J., & Seal, S. (2007). Electron paramagnetic study on radical scavenging properties of ceria nanoparticles. Chemical Physics Letters, 442(4-6), 405–408.

    Article  CAS  Google Scholar 

  62. Dowding, J. M., Dosani, T., Kumar, A., Seal, S., & Self, W. T. (2012). Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chemical Communications, 48, 4896–4898.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Purnendu Parhi acknowledges Department of Science and Technology (DST), project no. SR/FT/CS-91/2011 for funding. Siba Soren acknowledges Rajiv Gandhi Fellowship sponsored by UGC, New Delhi, for fellowship. Author acknowledges the Department of Chemistry and Department of Zoology Ravenshaw University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnendu Parhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soren, S., Jena, S.R., Samanta, L. et al. Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis. Appl Biochem Biotechnol 177, 148–161 (2015). https://doi.org/10.1007/s12010-015-1734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1734-8

Keywords

Navigation