Skip to main content
Log in

Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vinasse is the main liquid waste from ethanol production, and it has a considerable pollution potential. Biological treatment is a promising alternative to reduce its organic load. The aim of this study was to analyze the biodegradation of sugarcane juice vinasse in aerobic and anaerobic conditions. The content of carbohydrates, proteins and volatile fatty acids was evaluated. Vinasse samples showed a high biodegradability (>96.5 %) and low percentage of inert chemical oxygen demand (COD) (<3.2 %) in both aerobic and anaerobic conditions. The rates of substrate utilization were slightly higher in aerobic reactors, but COD stabilization occurred simultaneously in the anaerobic reactors, confirming its suitability for anaerobic digestion. Inert COD in anaerobic conditions was lower than in aerobic conditions. On the other hand, COD from metabolic products in the anaerobic reactors was higher than in the aerobic ones, indicating an increased release of soluble microbial products (SMPs) by anaerobic microorganisms. The results indicated that carbohydrates were satisfactorily degraded and protein-like substances were the major components remaining after biological degradation of vinasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. EPE. (2014). Brazilian Energy Balance 2010/year 2009. Rio de Janeiro: Energy Research Company.

    Google Scholar 

  2. van Haandel, A. C. (2005). Integrated energy production and reduction of the environmental impact at alcohol distillery plants. Water Science and Technology, 52, 49–57.

    Google Scholar 

  3. Dowd, M. K., Johansen, S. L., Cantarella, L., & Reilly, P. J. (1994). Low molecular weight organic composition of ethanol stillage from sugarcane molasses, citrus waste, and sweet whey. Journal of Agricultural and Food Chemistry, 42, 283–288.

    Article  CAS  Google Scholar 

  4. Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19, 63–102.

    Article  CAS  Google Scholar 

  5. Doelsh, E., Masion, A., Cazevieille, P., & Condom, N. (2009). Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation. Waste Management, 29, 1929–1935.

    Article  Google Scholar 

  6. Godshall, M. A., Vercellotti, J. R., & Triche, R. (2002). Comparison of cane and beet sugar macromolecules in processing. International Sugar Journal, 104(1241), 228–233.

    CAS  Google Scholar 

  7. Hatano, K., Kikuchi, S., Miyakawa, T., Tanokura, M., & Kubota, K. (2008). Separation and characterization of the colored material from sugarcane molasses. Chemosphere, 71, 1730–1737.

    Article  CAS  Google Scholar 

  8. Parnaudeau, V., Condom, N., Oliver, R., Cazevieille, P., & Recous, S. (2008). Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresource Technology, 99, 1553–1562.

    Article  CAS  Google Scholar 

  9. Zahn-Wellens/EMPA test. (1995) Detailed review paper on biodegradability testing environment monograph. OECD Guideline for the Testing of Chemicals. 98, 302B.

  10. Germirli, E., Orhon, D., & Artan, N. (1991). Assessment of the initial inert soluble COD in industrial wastewaters. Water Science and Technology, 23(4–6), 1077–1086.

    CAS  Google Scholar 

  11. Souza, C.L., Aquino, S.F., Chernicharo, C.A.L. & Silva, S.Q. (2005) Determinação da biodegradabilidade anaeróbia e aeróbia da escuma produzida em reatores UASB tratando esgotos domésticos. Proceedings: XV Simpósio Nacional de Bioprocessos, Recife, Brazil. V. cd. (p. 1–7) (in Portuguese).

  12. APHA, AWWA, WEF. (2005) Standards methods for the examination of water and wastewater, 21st ed., Washington.

  13. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  14. Lowry, O. H., Rosenbrough, N. J., Farr, R. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  15. Henze, M., Harremoes, P., Jansen, J. L. C., & Arvin, E. (2002). Wastewater treatment (3rd ed.). Berlin: Springer.

    Book  Google Scholar 

  16. Gonzalez, T., Terron, M. C., Yague, S., Zapico, E., Galletti, G. C., & Gonzalez, A. E. (2000). Pyrolysis/gas chromatography/ mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). Rapid Communications in Mass Spectrometry, 14, 1417–1424.

    Article  CAS  Google Scholar 

  17. Mota, V. T., Santos, F. S., & Amaral, M. C. S. (2013). Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance. Bioresource Technology, 146, 494–503.

    Article  CAS  Google Scholar 

  18. De Bazúa, C. D., Cabrero, M. A., & Poggi, H. M. (1991). Vinasses biological treatment by anaerobic and aerobic processes: laboratory and pilot-plant tests. Bioresource Technology, 35, 87–93.

    Article  Google Scholar 

  19. Cho, Y. K. (1983). Performance of a two-stage methane digestor for alcohol stillage derived from sugarcane molasses. Biotechnology Letters, 5, 555–560.

    Article  CAS  Google Scholar 

  20. Polack, J.A., Day, D.F. & Cho Y.K. (1981) Gasohol from sugar cane - stillage disposition. Report to Louisiana Department of Natural Resources, DNR Interagency, 21400-80-33.

  21. Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33, 3063–3082.

    Article  CAS  Google Scholar 

  22. Martin-Garcia, I., Monsalvo, V., Pidou, M., Le-Clech, P., Judd, S. J., Mcadama, E. J., & Jefferson, B. (2011). Impact of membrane configuration on fouling in anaerobic membrane bioreactors. Journal of Membrane Science, 382, 41–49.

    Article  CAS  Google Scholar 

  23. Mesquita, P. L., Aquino, S. F., Xavier, A. L. P., Silva, J. C. C., Afonso, R. C. F., & Silva, S. Q. (2010). Soluble microbial product (SMP) characterization in bench-scale aerobic and anaerobic CSTRs under different operational conditions. Brazilian Journal of Chemical Engineering, 27, 101–111.

    Article  CAS  Google Scholar 

  24. Kuo, W. C., Sneve, M. A., & Parkin, G. F. (1996). Formation of soluble microbial products during anaerobic treatment. Water Environment Research, 68, 279–285.

    Article  CAS  Google Scholar 

  25. Boero, V. J., Eckenfelder, W. W., & Bowers, A. R. (1991). Soluble microbial product formation in biological systems. Water Science and Technology, 23(2), 1067–1076.

    CAS  Google Scholar 

  26. Germirli, F., Ince, O., Orhon, D. E., & Simsek, A. (1998). Formation of soluble microbial products during anaerobic treatment. Water Research, 32, 3490–3494.

    Article  Google Scholar 

  27. Chudoba, J. (1985). Quantitative estimation in COD units of refractory organic compounds produced by activated sludge microorganisms. Water Research, 19, 37–43.

    Article  CAS  Google Scholar 

  28. Patsios, S. I., & Karabelas, A. J. (2011). An investigation of the long-term filtration performance of a membrane bioreactor (MBR): The role of specific organic fractions. Journal of Membrane Science, 372, 102–115.

    Article  CAS  Google Scholar 

  29. Barker, D. J., Mannucchi, G. A., Salvi, S. M. L., & Stuckey, D. C. (1999). Characterization of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Research, 33, 2499–2510.

    Article  CAS  Google Scholar 

  30. Kim, M., Ahn, Y. H., & Speece, R. E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs thermophilic. Water Research, 36, 4369–4385.

    Article  CAS  Google Scholar 

  31. Satyawali, Y., & Balakrishnan, M. (2008). Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter. Separation and Purification Technology, 63, 278–286.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian government for the support provided for this research from the National Council of Technological and Scientific Development (CNPq) and the Research Support Foundation of the State of Minas Gerais (Fapemig).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Mota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, V.T., Araújo, T.A. & Amaral, M.C.S. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse. Appl Biochem Biotechnol 176, 1402–1412 (2015). https://doi.org/10.1007/s12010-015-1653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1653-8

Keywords