Skip to main content
Log in

The Photovoltaic Effect of CdS Quantum Dots Synthesized in Inverse Micelles and R-Phycoerythrin Tunnel Cavities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

CdS quantum dots (CdS QDs) 4.3 nm in diameter synthesized in an AOT/isooctane/water microemulsion and in R-phycoerythrin tunnel cavities (3.5 × 6.0 nm) were analyzed for photoelectrochemical properties. The CdS QDs preparations were applied onto a platinum electrode to obtain solid films. Experiments were performed in a two-section vessel, with one section filled with ethanol and the other, with 3 M KCl. The sections were connected through an agar stopper. It was found that illumination of the films resulted in a change of the electrode potential. The magnitude of this change and the kinetics of the appearance and disappearance of the photopotential, i.e., the difference between the electrode potential on the light and in dark, depended on the nature of the QD shell. The photovoltaic effect of CdS QDs in R-phycoerythrin, compared to that of CdS QDs in AOT/isooctane micelles, is three to four times greater due to the photosensitizing action of R-phycoerythrin. The photosensitized effect was markedly higher than the photoelectric sensitivity of R-phycoerythrin and had the opposite polarity. Changes in the potential upon turning the light on and off could be observed repeatedly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414, 338–344.

    Article  Google Scholar 

  2. Chen, W. (2007). Nanoparticle based photodynamic therapy for cancer treatment. In H. Nalwa & T. Webster (Eds.), Cancer nanotechnology: nanomaterials for cancer diagnosis and therapy (pp. 235–258). California: American Scientific Publishers.

    Google Scholar 

  3. Ollis, D. F., & Al-Ekabi, H. (1993). Photocatalytic purification and treatment of water and air. Amsterdam: Elsevier.

    Google Scholar 

  4. Grzelczak, M., Vermant, J., Furst, E. M., & Liz-Marzan, L. M. (2010). Directed self-assembly of nanoparticles. ACS Nano, 4, 3591–3605.

    Article  CAS  Google Scholar 

  5. Kamat, P. V. (1997). Native and surface modified semiconductor nanoclusters. Progress in Inorganic Chemistry, 44, 273–343.

    Article  CAS  Google Scholar 

  6. Kong, F.-T., Dai, S.-Y., & Wang, K.-J. (2007). Review of recent progress in dye-sensitized solar cells. Advances in OptoElectronics, 2007, 1–13.

    Article  Google Scholar 

  7. Evstigneev, V. B., & Gavrilova, V. A. (1964). The ability of phycoerythrin to photosensitize redox reactions. Biofizika, 9, 739–741.

    CAS  Google Scholar 

  8. Evstigneev, V. B. & Bekasova, O. D. (1970). The photochemical properties of algal biliproteins. In: Physiology and biochemistry of healthy and diseased plants. (Andreenko, S. S., ed.), M.G.U., Moscow, Rus., pp. 170–184.

  9. Evstigneev, V. B., & Bekasova, O. D. (1973). The photochemical activity of phycocyanin and phycoerythrin. Izvestiya Academy of Sciences U.S.S.R., Biology Series, 3, 344–356.

    CAS  Google Scholar 

  10. Kumbar, M., & MacColl, R. (1975). Effect of aromatic molecules on the aggregation of C-phycocyanin: quantum chemical calculations on phycocyanobilin and phycoerythrobilin. Research Communications in Chemical Pathology and Pharmacology, 11, 627–637.

    CAS  Google Scholar 

  11. Evstigneev, V. B., & Bekasova, O. D. (1970). Photochemical effect of phycoerythrin and phycoerythrobilin films. Biofizika, 15, 807–815.

    CAS  Google Scholar 

  12. Salamon, Z., & Frackowiak, D. (1975). Photosensitization in phycoprotein complexes at electrodes. Photosynthetica, 9, 337–339.

    CAS  Google Scholar 

  13. Frackowiak, D., Skowron, A., & Salamon, Z. (1976). Photopotential of biliproteins in electrochemical cell. Photosynthetica, 10, 339–342.

    CAS  Google Scholar 

  14. Berns, D. S., Chen, C.-H., & Ilani, A. (1976). The modification by biliproteins of intensity and direction of electron flow across chlorophyll-containing membranes. In B. Pullman (Ed.), Environmental effects on molecular structure and properties (pp. 547–560). Holland: Dordrecht D. Reidel.

    Chapter  Google Scholar 

  15. He, J. A., Hu, Y. Z., & Jiang, L. J. (1997). Photodynamic action of phycobiliproteins: in situ generation of reactive oxygen species. Biochimica et Biophysica Acta, 1320, 165–174.

    Article  CAS  Google Scholar 

  16. Brekhovskikh, A. A., & Bekasova, O. D. (2005). CdS nanoparticles in R-phycoerythrin, a protein matrix. Inorganic Materials, 41, 331–337.

    Article  CAS  Google Scholar 

  17. Bekasova, O. D., Brekhovskikh, A. A., Brykina, G. D., Dubinchuk, B. T., Mochalova, V. S., & Kotelnikov, A. S. (2005). R-Phycoerythrin: a natural ligand for detoxifying cadmium ions and a tunnel matrix for synthesis of cadmium sulfide nanoparticles. Appllied Biochemistry and Microbiology, 41, 269–274.

    Article  CAS  Google Scholar 

  18. Bekasova, O. D., Chebotareva, N. A., Safenkova, I. V., Rusanov, A. L., & Kurganov, B. I. (2011). Effect of CdS nanoparticles on the properties of a protein matrix. Inorganic Materials, 47, 922–928.

    Article  Google Scholar 

  19. Pileni, M. P. (1997). Nanosized particles made in colloidal assemblies. Langmuir, 13, 3266–3276.

    Article  CAS  Google Scholar 

  20. Dokuchaev, A. G., Mysoedova, T. G., & Revina, А. А. (1997). Effect of various factors on the formation of silver aggregates in reversed micelles under exposure to γ-radiation. High Energy Chemistry (Moscow), 31, 316–319.

    Google Scholar 

  21. Yu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Effect of various factors on the formation of silver aggregates in reversed micelles under exposure to γ-radiation. Chemistry of Materials, 15, 2854–2860.

    Article  CAS  Google Scholar 

  22. Evstigneev, V. B. (2008). Photochemical interactions of chlorophyll and its analogues with electron acceptors. In: V. B. Evstigneev: Selected works. A tribute to the 100th anniversary of his birth. (Shuvalov, V. A., ed.), ZAO A-Print, Russia, pp. 78–99.

  23. Evstratov, A. A., Kish, K., Malygin, A. A., Taulemesse, G.-M., Gaudon, P., & Vincent, T. (2007). Distribution of free charge carriers over the surface of photosensitive materials: why and how to control? Russian Chemical Journal (Journal of D Mendeleev Russian Chemical Society), 51(6), 52–60.

    CAS  Google Scholar 

  24. Bekasova, O. D., Revina, A. A., Rusanov, A. L., Kornienko, E. S., & Kurganov, B. I. (2013). Effect of gamma-ray irradiation on the size and properties of CdS quantum dots in reverse micelles. Radiation Physics and Chemistry, 92, 87–92.

    Article  CAS  Google Scholar 

  25. Terenin, A. N. (1967). Photonics of dye molecules and related organic compounds. Nauka, Leningrad, Russ.

  26. Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Structure and function of chromophores in R-phycoerythrin at 1.9 Å resolution. Proteins: Structure, Function, and Genetics, 34, 224–231.

    Article  CAS  Google Scholar 

  27. Chang, W. R., Jiang, T., Wan, Z. L., Zhang, J. P., Yang, Z. X., & Liang, D. C. (1996). Crystal structure of R-phycoerythrin from Polysiphonia ureolata at 2.8 Å resolution. Journal of Molecular Biology, 262, 721–731.

    Article  CAS  Google Scholar 

  28. Hara, K., & Mori, S. (2011). Dye-sensitized solar cells. In A. Luque & S. Hegedus (Eds.), Handbook of photovoltaic science and engineering (pp. 642–674). Chichester: Wiley.

    Chapter  Google Scholar 

  29. Robel, I., Bunker, B. A., & Kamat, P. V. (2005). Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Advanced Materials, 17, 2458–2463.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (Grant no. 14-04-01530-a) and the Program “Molecular and Cell Biology” of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga D. Bekasova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekasova, O.D., Revina, A.A., Kornienko, E.S. et al. The Photovoltaic Effect of CdS Quantum Dots Synthesized in Inverse Micelles and R-Phycoerythrin Tunnel Cavities. Appl Biochem Biotechnol 176, 1141–1150 (2015). https://doi.org/10.1007/s12010-015-1635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1635-x

Keywords

Navigation