Skip to main content
Log in

Cloning and Expression of the xynA1 Gene Encoding a Xylanase of the GH10 Group in Caulobacter crescentus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Caulobacter crescentus (NA1000 strain) are aquatic bacteria that can live in environments of low nutritional quality and present numerous genes that encode enzymes involved in plant cell wall deconstruction, including five genes for β-xylosidases (xynB1xynB5) and three genes for xylanases (xynA1xynA3). The overall activity of xylanases in the presence of different agro-industrial residues was evaluated, and it was found that the residues from the processing of corn were the most efficient in inducing bacterial xylanases. The xynA1 gene (CCNA_02894) encoding a predicted xylanase of group 10 of glyco-hydrolases (GH10) that was efficiently overexpressed in Escherichia coli LMG194 using 0.02 % arabinose, after cloning into the vector pJet1.2blunt and subcloning into the expression vector pBAD/gIII, provided a fusion protein that contained carboxy-terminal His-tags, named XynA1. The characterization of pure XynA1 showed an enzymatic activity of 18.26 U mL−1 and a specific activity of 2.22 U mg−1 in the presence of xylan from beechwood as a substrate. XynA1 activity was inhibited by EDTA and metal ions such as Cu2+ and Mg2+. By contrast, β-mercaptoethanol, dithiothreitol (DTT), and Ca2+ induced recombinant enzyme activity. Kinetic data for XynA1 revealed K M and V max values of 3.77 mg mL−1 and 10.20 μM min−1, respectively. Finally, the enzyme presented an optimum pH of 6 and an optimum temperature of 50 °C. In addition, 80 % of the activity of XynA1 was maintained at 50 °C for 4 h of incubation, suggesting a thermal stability for the biotechnological processes. This work is the first study concerning the cloning, overexpression, and enzymatic characterization of C. crescentus xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, T., Mcconkey, B., Huffman, T., Smith, S., Macgregor, B., Yemshanov, D., & Kulshreshtha, S. (2014). Potential and impacts of renewable energy production from agricultural biomass in Canada. Applied Energy, 130, 222–229.

    Article  Google Scholar 

  2. Peng, P., & She, D. (2014). Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydrate Polymers, 112, 701–720.

    Article  CAS  Google Scholar 

  3. Ojeda, K., El-Halwagi, M., Kafarov (2013) V. Chapter 12: Design of a lignocellulosic feedstock biorefinery based on a biochemical processing platform using process integration methodologies and energy analysis. In: Integrated biorefineries: design, analysis, and optimization, Stuart, P. R.; El-Halwagi, M. M. CRC Press, p.370-391.

  4. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: A review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  5. Zhong, C., Lau, M. W., Balan, V., Dale, B. E., & Yuan, Y. J. (2009). Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Applied Biochemistry and Biotechnology, 84, 667–676.

    CAS  Google Scholar 

  6. Marks, M. E., Castro-Rojas, C. M., Teiling, C. D. U. L., Kapatral, V., Walunas, T. L., & Crosson, S. (2010). The genetics basis of laboratory adaptation in Caulobacter crescentus. The Journal of Bacteriology, 192, 3678–3688.

    Article  CAS  Google Scholar 

  7. Graciano, L., Corrêa, J. M., Gandra, R. F., Seixas, F. A. V., Kadowaki, M. K., Sampaio, S. C., Silva, J. L., Osaku, C. A., & Simão, R. C. G. (2012). The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus ß-xylosidase I. World Journal of Microbiology and Biotechnology, 28, 2879–2888.

    Article  CAS  Google Scholar 

  8. Corrêa, J. M., Graciano, L., Abrahão, J., Loth, E. A., Gandra, R. F., Kadowaki, M. K., Henn, C., & Simao, R. C. G. (2012). Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentu. Applied Biochemistry and Biotechnology, 168, 2218–2229.

    Article  Google Scholar 

  9. Corrêa, J. M., Mingori, M. R., Gandra, R. F., Loth, E. A., Seixas, F. A., & Simão, R. C. G. (2014). Depletion of the xynB2 gene upregulates β-xylosidase expression in C. crescentus. Applied Biochemistry and Biotechnology, 172, 1085–1097.

    Article  Google Scholar 

  10. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  11. Kozlowski, L. P. (2013) Isoelectric point according different scales—isoelectric point calculator, available in: http://isoelectric.ovh.org

  12. Adhyaru, D. N., Bhatt, N. S., & Modi, H. A. (2014). Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis Dhn8, its characterization and application in sorghum straw saccharification. Biocatalysis and Agricultural Biotechnology, 3, 182–190.

    Article  Google Scholar 

  13. Bataillon, M., Cardinali, A.-P. N., Castillon, N., & Duchiron, F. (2000). Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain Sps-0. Enzyme and Microbial Technology, 26, 187–192.

    Article  CAS  Google Scholar 

  14. Mander, P., Choi, Y. E., Pradeep, G. C., Choi, Y. S., Hong, J. H., Cho, S. S., & Yoo, J. C. (2014). Biochemical characterization of xylanase produced from Streptomyces sp. Cs624 using an agro residue substrate. Process Biochemistry, 49, 451–456.

    Article  CAS  Google Scholar 

  15. Qiao, W., Tang, S., Mi, S., Jia, X., Peng, X., & Han, Y. (2014). Biochemical characterization of a novel thermostable gh11 xylanase with cbm6 domain from Caldicelluloriruptor kronotskyensis. Journal of Molecular Catalysis B: Enzymatic, 107, 8–16.

    Article  CAS  Google Scholar 

  16. Blanco, A., Vidal, T., Colom, J. F., & Pastor, F. I. (1995). Purification and properties of xylanase a from alkali-tolerant Bacillus sp. strain Bp-23. Applied and Environmental Microbiology, 61, 4468–4470.

    CAS  Google Scholar 

  17. Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., & Horikoshi, K. (1993). Production of alkaline xylanase by a newly isolated alkaliphilic Bacillus sp. strain 41m-1. World Journal of Microbiology and Biotechnology, 9, 221–224.

    Article  CAS  Google Scholar 

  18. Kamble, R. D., & And Jadhav, A. R. (2012). Production, purification and characterisation of alkali stable xylanase from Cellulosimicrobium sp. mtcc 10645. Asian Pacific Journal of Tropical Biomedicine, 2, 1790–1797.

    Article  Google Scholar 

  19. Nawel, B., Said, B., Estelle, C., Hakim, H., & Duchiron, F. (2011). Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochemistry, 46, 519–525.

    Article  CAS  Google Scholar 

  20. Shi, H., Zhang, Y., Li, X., Huang, Y. J., Wang, L., Wang, Y., Ding, H., & Wang, F. (2013). A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: Cloning, expression and characterization. Biotechnology for Biofuels, 6, 1–9.

    Article  CAS  Google Scholar 

  21. Chen, S., Kaufman, M. G., Miazgowicz, K. L., Bagdasarian, M., & Walker, E. D. (2013). Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresource Technology, 128, 145–155.

    Article  CAS  Google Scholar 

  22. Sá-Pereira, P., Mesquita, A., Duarte, J. C., Barros, M. R. A., & Costa-Ferreira, M. (2002). Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzyme and Microbial Technology, 30, 924–933.

    Article  Google Scholar 

  23. Ko, C. H., Tsai, C. H., Tu, J., Lee, H. I., Ku, L. T., Kuo, P. A., & Lai, Y. K. (2010). Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis Bl11. Process Biochemistry, 45, 1638–1644.

    Article  CAS  Google Scholar 

  24. Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., & Chaabouni, S. E. (2014). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis Ueb-Fk and their in vitro evaluation as prebiotics. Food and Bioproducts Processing. doi:10.1016/j.fbp.2014.07.012.

    Google Scholar 

  25. Murugan, S., Arnold, D., Pongiya, U. D., & Narayanan, P. M. (2011). Production of xilanase from Arthobacter sp. MTCC6915 using saw dust as substrate under solid state fermentation. Enzyme Research, 1, 1–7.

    Article  Google Scholar 

  26. Heck, J. X., Soares, L. H. B., Hertz, P. F., & Ayub, M. A. Z. (2006). Purification and properties of a xylanase produced by Bacillus circulans Bl53 on solid-state cultivation. Biochemical Engineering Journal, 32, 179–184.

    Article  CAS  Google Scholar 

  27. Tsubouchi, T., Shimane, Y., Usui, K., Shimamura, S., Mori, K., Hiraki, T., Tame, A., Uematsu, K., Maruyama, T., & Hatada, Y. (2013). Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. International Journal Of Systematic And Evolutionary Microbiology, 63, 1987–1994.

    Article  CAS  Google Scholar 

  28. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P., Davies, G. (1995). Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of The National Academy of Sciences of The United States of America, 92, 7090-7094.

Download references

Acknowledgments

L. Graciano, J.M. Corrêa, F.G.N. Vieira, and A. Bosetto were fellows of the Coordination of Improvement of Higher Education Personnel (CAPES). R.C.G. Simão was partially supported by Araucaria Foundation (process 630/2014).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Garcia Simão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graciano, L., Corrêa, J.M., Vieira, F.G.N. et al. Cloning and Expression of the xynA1 Gene Encoding a Xylanase of the GH10 Group in Caulobacter crescentus . Appl Biochem Biotechnol 175, 3915–3929 (2015). https://doi.org/10.1007/s12010-015-1560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1560-z

Keywords

Navigation