Skip to main content
Log in

Insight into Microwave-Assisted Lipase Catalyzed Synthesis of Geranyl Cinnamate: Optimization and Kinetic Modeling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cinnamate esters have gained importance due to their unique antioxidant, flavor, and fragrance properties. Synergism of microwave irradiation and enzyme catalysis was investigated in transesterification of ethyl cinnamate and geraniol. Effects of different operating parameters such as biocatalyst, solvent, and temperature were first studied. An increase in initial rates up to 4.2-fold was observed under microwave irradiation vis-a-vis conventional heating. Further, the Taguchi L16 (4*4) orthogonal array design with four level-four variables and 16 run was employed for the optimization of parameters including enzyme loading, temperature, speed of agitation, and substrate mole ratio. Optimal conditions obtained via the Taguchi approach were as follows: enzyme loading, 60 mg; temperature, 65 °C; speed of agitation, 300 rpm; and substrate mole ratio, 1:2. The analysis of initial rate data established the validity of the ternary complex ordered bi–bi mechanism with inhibition by geraniol. The experimental data fitted very well with the model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yadav, G. D., & Shinde, S. D. (2012). International Review of Chemical Engineering, 4, 589–596.

    Google Scholar 

  2. Yadav, G. D., & Lathi, P. S. (2004). Journal of Molecular Catalysis B: Enzymatic, 27, 113–119.

    Article  CAS  Google Scholar 

  3. Jakovetić, S. M., Jugović, B. Z., Gvozdenović, M. M., Bezbradica, D. I., Antov, M. G., Mijin, D. Z., & Knežević-Jugović, Z. D. (2013). Applied Biochemistry and Biotechnology, 170, 1560–1573.

    Article  Google Scholar 

  4. Yadav, G. D., & Shinde, S. D. (2012). International Journal of Chemical Reactor Engineering, 10, A70.

    Article  Google Scholar 

  5. Chiaradia, V., Paroul, N., Cansian, R. L., Júnior, C. V., Detofol, M. R., Lerin, L. A., Oliveira, J. V., & de Oliveira, D. (2012). Applied Biochemistry and Biotechnology, 168, 742–751.

    Article  CAS  Google Scholar 

  6. Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Vladimir Oliveira, J., & de Oliveira, D. (2012). Applied Biochemistry and Biotechnology, 166, 13–21.

    Article  CAS  Google Scholar 

  7. Yadav, G. D., & Devi, K. M. (2002). Biochemical Engineering Journal, 10, 93–101.

    Article  CAS  Google Scholar 

  8. Zhang, W.-W., Wang, N., Feng, X.-W., Zhang, Y., & Yu, X.-Q. (2014). Applied Biochemistry and Biotechnology, 173, 535–543.

    Article  CAS  Google Scholar 

  9. Pan, X., Chen, B., Wang, J., Zhang, X., Zhul, B., & Tan, T. (2012). Applied Biochemistry and Biotechnology, 168, 68–77.

    Article  CAS  Google Scholar 

  10. Voll, F. A. P., Zanette, A. F., Cabral, V. F., Dariva, C., De Souza, R. O. M. A., Filho, L. C., & Corazza, M. L. (2012). Applied Biochemistry and Biotechnology, 168, 1121–1142.

    Article  CAS  Google Scholar 

  11. Romero, M. D., Gomez, J. M., Diaz-Suelto, B., Garcia-Sanz, A., & Baster, N. (2011). Applied Biochemistry and Biotechnology, 165, 1129–1140.

    Article  CAS  Google Scholar 

  12. Mohamed, I. O. (2013). Applied Biochemistry and Biotechnology, 171, 655–666.

    Article  CAS  Google Scholar 

  13. Torres, C. F., Torrelo, G., Vazquez, L., Señorans, F. J., & Reglero, G. (2008). Journal of Bioscience and Bioengineering, 106, 559–562.

    Article  CAS  Google Scholar 

  14. Shinde, S. D., & Lele, S. S. (2010). International Journal of Advanced Biotechnology and Research, 1, 104–114.

    Google Scholar 

  15. Liu, S., Zhang, C., Hong, P., & Ji, H. (2007). Food Chemistry, 103, 1009–1015.

    Article  CAS  Google Scholar 

  16. de Araújo, M. E. M. B., Campos, P. R. B., Noso, T. M., Alberici, R. M., da Silva Cunha, I. B., Simas, R. C., Eberlin, M. N., & Carvalho, P. O. (2011). Food Chemistry, 127, 28–33.

    Article  Google Scholar 

  17. Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). Biotechnology Journal, 3, 510–523.

    Article  CAS  Google Scholar 

  18. Saudagar, P. S., & Singhal, R. S. (2007). Applied Biochemistry and Biotechnology, 136, 345–359.

    Article  CAS  Google Scholar 

  19. Adnani, A., Basri, M., Malek, E. A., Salleh, A. B., Abdul Rahman, M. B., Chaibakhsh, N., & Abdul Rahman, R. N. Z. R. (2010). Industrial Crops and Products, 31, 350–356.

    Article  CAS  Google Scholar 

  20. Preeti, V. E., Sandhya, S. V., Kuttiraja, M., Sindhu, R., Vani, S., Kumar, S. R., Pandey, A., & Binod, P. (2012). Applied Biochemistry and Biotechnology, 167, 1489–1500.

    Article  CAS  Google Scholar 

  21. Rao, R. S., Prakasham, R., Prasad, K. K., Rajesham, S., Sarma, P., & Rao, L. V. (2004). Process Biochemistry, 39, 951–956.

    Article  CAS  Google Scholar 

  22. Pandit, N. T., & Pandit, A. B. (2014). Applied Biochemistry and Biotechnology, 172, 3606–3620.

    Article  CAS  Google Scholar 

  23. Houng, J. Y., Hsu, H.-F., Liu, Y.-H., & Wu, J.-Y. (2003). Journal of Biotechnology, 100, 239–250.

    Article  CAS  Google Scholar 

  24. de Oliveira, D., do Nascimento Filho, I., di Luccio, M., Faccio, C., Rosa, C. D., Bender, J. P., Lipke, N., Amroginski, C., Dariva, C., & de Oliveira, J. V. (2005). Applied Biochemistry and Biotechnology, 121, 231–241.

    Article  Google Scholar 

  25. Sun, J., Yu, B., Curran, P., & Liu, S.-Q. (2012). Food Chemistry, 135, 2714–2720.

    Article  CAS  Google Scholar 

  26. Kamil, R. N. M., Yusup, S., & Rashid, U. (2011). Fuel, 90, 2343–2345.

    Article  CAS  Google Scholar 

  27. Wang, A., Liu, M., Wang, H., Zhou, C., Du, Z., Zhu, S., Shen, S., & Ouyang, P. (2008). Journal of Bioscience and Bioengineering, 106, 286–291.

    Article  CAS  Google Scholar 

  28. Wang, A., Zhou, C., Du, Z., Liu, M., Zhu, S., Shen, S., & Ouyang, P. (2009). Journal of Bioscience and Bioengineering, 107, 219–224.

    Article  CAS  Google Scholar 

  29. Yadav, G. D., & Borkar, I. V. (2006). AIChE Journal, 52, 1235–1247.

    Article  CAS  Google Scholar 

  30. Kappe, O. C., Pieber, B., & Dallinger, D. (2013). Angewandte Chemie International Edition, 52, 1088–1094.

    Article  CAS  Google Scholar 

  31. Loupy, A. (2002). Microwaves in organic synthesis. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  32. Hayes, B. L. (2002). Microwave synthesis: chemistry at the speed of light, Matthews. NC: CEM publishing.

    Google Scholar 

  33. Yadav, G. D., & Dhoot, S. B. (2009). Journal of Molecular Catalysis B: Enzymatic, 57, 34–39.

    Article  CAS  Google Scholar 

  34. Yadav, G. D., & Pawar, S. V. (2012). Bioresource Technology, 109, 1–6.

    Article  CAS  Google Scholar 

  35. Wan, H.-D., Sun, S.-Y., Hu, X.-Y., & Xia, Y.-M. (2012). Applied Biochemistry and Biotechnology, 166, 1454–1462.

    Article  CAS  Google Scholar 

  36. Zhou, J., Wu, D., & Guo, D. (2010). Journal of Chemical Technology and Biotechnology, 85, 1402–1406.

    Article  CAS  Google Scholar 

  37. Yu, D., Tian, L., Ma, D., Wu, H., Wang, Z., Wang, L., & Fang, X. (2010). Green Chemistry, 12, 844–850.

    Article  CAS  Google Scholar 

  38. Yadav, G. D., & Borkar, I. V. (2008). Industrial and Engineering Chemistry Research, 47, 3358–3363.

    Article  CAS  Google Scholar 

  39. Wehtje, E., & Adlercreutz, P. (1997). Biotechnology Letters, 19, 537–540.

    Article  CAS  Google Scholar 

  40. da Silva, C. J., Queiroz, N., da Graca, N. M., & Soldi, V. (2005). Process Biochemistry, 40, 401–409.

    Article  Google Scholar 

Download references

Acknowledgments

GDY received support from R.T. Mody Distinguished Professor Endowment and J. C. Bose National Fellowship of Department of Science and Technology, Government of India. SDS received SRF from UGC under its Meritorious Fellowship BSR program (CAS in Chemical Engineering Department). The authors thank Novo Nordisk, Denmark for the gifts of enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati D. Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S.D., Yadav, G.D. Insight into Microwave-Assisted Lipase Catalyzed Synthesis of Geranyl Cinnamate: Optimization and Kinetic Modeling. Appl Biochem Biotechnol 175, 2035–2049 (2015). https://doi.org/10.1007/s12010-014-1367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1367-3

Keywords

Navigation