Skip to main content
Log in

Selection of Peptidoglycan-Specific Aptamers for Bacterial Cells Identification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with 32P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jensen, A. G., Wachmann, C. H., Espersen, F., Scheibel, J., Skinhoj, P., & Frimodt-Moller, N. (2002). Archives of Internal Medicine, 162, 25–32.

    Article  CAS  Google Scholar 

  2. Verhagen, D. W., van der Meer, J. T., Hamming, T., de Jong, M. D., & Speelman, P. (2003). Scandinavian Journal of Infectious Diseases, 35, 459–463.

    Article  Google Scholar 

  3. Lautenschlager, S., Herzog, C., & Zimmerli, W. (1993). Clinical Infectious Diseases, 16, 567–573.

    Article  CAS  Google Scholar 

  4. Cuijpers, M. L., Vos, F. J., Bleeker-Rovers, C. P., Krabbe, P. F., Pickkers, P., van Dijk, A. P., Wanten, G. J., Sturm, P. D., Oyen, W. J., & Kullberg, B. J. (2007). European Journal of Clinical Microbiology and Infectious Diseases, 26, 105–113.

    Article  CAS  Google Scholar 

  5. Ferro-Flores, G., Ocampo-Garcia, B. E., & Melendez-Alafort, L. (2012). Current Pharmaceutical Design, 18, 1098–1106.

    Article  CAS  Google Scholar 

  6. Welling, M. M. F.-F., Guillermina; Pirmettis, Ioannis; Brouwer, Carlo P.J.M. (2009) Anti-Infective Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Infective Agents) 8, 272-287.

  7. Ellington, A. D., & Szostak, J. W. (1990). Nature, 346, 818–822.

    Article  CAS  Google Scholar 

  8. Tuerk, C., & Gold, L. (1990). Science, 249, 505–510.

    Article  CAS  Google Scholar 

  9. Missailidis, S., & Perkins, A. (2007). Cancer Biotherapy and Radiopharmaceuticals, 22, 453–468.

    Article  CAS  Google Scholar 

  10. Hong, H., Goel, S., Zhang, Y., & Cai, W. (2011). Current Medicinal Chemistry, 18, 4195–4205.

    Article  CAS  Google Scholar 

  11. Franciscis, V., Rienzo, A. and Cerchia, L. (2012) in Nucleic Acid Aptamers for In Vivo Molecular Imaging, Molecular Imaging (Schaller, B., Ed.) InTech, Rijeka, Croatia, pp. 95-116.

  12. Zuker, M. (2003). Nucleic Acids Research, 31, 3406–3415.

    Article  CAS  Google Scholar 

  13. Gold, L., Polisky, B., Uhlenbeck, O., & Yarus, M. (1995). Annual Review of Biochemistry, 64, 763–797.

  14. Yang, Q., Goldstein, I. J., Mei, H. Y., & Engelke, D. R. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 5462–5467.

  15. Masud, M. M., Kuwahara, M., Ozaki, H., & Sawai, H. (2004). Bioorganic & Medicinal Chemistry, 12, 1111–1120.

  16. Low, S. Y., Hill, J. E., & Peccia, J. (2009). Biochemical and Biophysical Research Communications, 378, 701–705.

  17. Silhavy, T. J., Kahne, D., & Walker, S. (2010). Cold Spring Harbor Perspectives in Biology, 2, a000414.

    Article  Google Scholar 

  18. Bowman, S. M., & Free, S. J. (2006). Bioessays, 28, 799–808.

    Article  Google Scholar 

  19. Vivekananda, J., & Kiel, J. L. (2006). Laboratory Investigation, 86, 610–618.

    CAS  Google Scholar 

  20. Dwarakanath, S., Bruno, J. G., Shastry, A., Phillips, T., John, A. A., Kumar, A., & Stephenson, L. D. (2004). Biochemical and Biophysical Research Communications, 325, 739–743.

    Article  CAS  Google Scholar 

  21. Bruno, J. G., Carrillo, M. P., Phillips, T., & Andrews, C. J. (2010). Journal of Fluorescence, 20, 1211–1223.

    Article  CAS  Google Scholar 

  22. Chen, F., Zhou, J., Luo, F., Mohammed, A. B., & Zhang, X. L. (2007). Biochemical and Biophysical Research Communications, 357, 743–748.

    Article  CAS  Google Scholar 

  23. Cao, X., Li, S., Chen, L., Ding, H., Xu, H., Huang, Y., Li, J., Liu, N., Cao, W., Zhu, Y., Shen, B., & Shao, N. (2009). Nucleic Acids Research, 37, 4621–4628.

    Article  CAS  Google Scholar 

  24. Hamula, C. L., Le, X. C., & Li, X. F. (2011). Analytical Chemistry, 83, 3640–3647.

    Article  CAS  Google Scholar 

  25. Dwivedi, H. P., Smiley, R. D., & Jaykus, L. A. (2013). Applied Microbiology and Biotechnology, 97, 3677–3686.

    Article  CAS  Google Scholar 

  26. Bruno, J. G., & Kiel, J. L. (1999). Biosensors and Bioelectronics, 14, 457–464.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antero Silva Ribeiro de Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.M., de Souza Lacerda, C.M., de Faria, L.S. et al. Selection of Peptidoglycan-Specific Aptamers for Bacterial Cells Identification. Appl Biochem Biotechnol 174, 2548–2556 (2014). https://doi.org/10.1007/s12010-014-1206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1206-6

Keywords

Navigation