Skip to main content
Log in

Structure and Properties of Bacterial Cellulose Produced Using a Trickling Bed Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Structure and properties of bacterial cellulose (BC) produced by trickling fermentation were studied. The following indexes, such as extrinsic shapes, microstructure, chemical structure, purity, water holding capacity, porosity, and thermogravimetric characteristics, are recommended for assessing the structure and properties of bacterial cellulose. With the comparison to bacterial cellulose produced by static fermentation and shaking fermentation, the results showed that for different BC cultivation methods, the extrinsic shapes, synthetic mode, and microstructure were different. The basic consistency of the infrared spectrogram from three kinds of bacterial cellulose reflected that the chemical structures were very similar. But the –OH associating degree of trickling fermentation BC was higher, and the polymerization degree, purity, water holding capacity, porosity, and thermal stability of trickling fermentation BC were also higher than those of static fermentation BC and shaking fermentation BC. But the crystallinity and crystal grain size of trickling fermentation BC were less than those of static fermentation BC and greater than those of shaking fermentation BC and plant fiber. These above structure and properties of trickling fermentation BC could reference bacterial cellulose’s application in food and material field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science, 35, 261–270.

    Article  CAS  Google Scholar 

  2. Wu, Z. Y., Li, C., Liang, H. W., Chen, J. F., & Yu, S. H. (2013). Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chemie International Edition, 125, 2997–3001.

    Article  Google Scholar 

  3. Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.

    Article  CAS  Google Scholar 

  4. Chao, Y., Ishida, T., Sugano, Y., & Shoda, M. (2000). Bacterial cellulose production by Acetobacter xylinum in a 50-l internal-loop airlift reactor. Biotechnology and Bioengineering, 68, 345–352.

    Article  CAS  Google Scholar 

  5. Coucheron, D. H. (1991). An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. Journal of Bacteriology, 173, 5723–5731.

    CAS  Google Scholar 

  6. Masayuki, O., Ikuro, H., Kiyoshi, T., & Tomoko, A. (2002). Silicone rubber membrane bioreactors for bacterial cellulose production. Biotechnology and Bioprocess Engineering, 7, 289–294.

    Article  Google Scholar 

  7. Shao, Z. Q. (2007). Cellulose ethers (pp. 226–227). Beijing: Chemical Industry.

    Google Scholar 

  8. Zhu, G. J., & Wang, Z. X. (1994). Industrial microbiology experiments technical manual (pp. 209–213). Beijing: China Light Industry.

    Google Scholar 

  9. Robertson, J. A., & Eastwood, M. A. (1981). An examination of factors which may affect the water holding capacity of dietary fibre. British Journal of Nutrition, 45, 83–87.

    Article  CAS  Google Scholar 

  10. Mancini, C. E., Berndt, C. C., Sun, L., & Kucuk, A. (2001). Porosity determinations in thermally sprayed hydroxyapatite coatings. Journal of Materials Science, 36, 3891–3896.

    Article  CAS  Google Scholar 

  11. Kitaoka, K., Yamamoto, H., Tani, T., Hoshijima, K., & Nakauchi, M. (1997). Mechanical strength and bone bonding of a titanium fiber mesh block for intervertebral fusion. Journal of Orthopaedic Science, 2, 106–113.

    Article  Google Scholar 

  12. Mihranyan, A., Llagostera, A. P., Karmhag, R., Strømme, M., & Ek, R. (2004). Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics, 269, 433–442.

    Article  CAS  Google Scholar 

  13. Zhang, L. N., Xue, Q., Mo, Z. S., & Jin, X. (2003). Current researching methods on polymer physics (pp. 194–195). Hubei: Wuhan University.

    Google Scholar 

  14. Feng, Y. H., Li, J. C., Lin, Q., Wang, X. B., Wu, Z. X., Pang, S. J., et al. (2007). Crystallinity and thermal decomposition of dialdehyde celluloses from bacterial cellulose. Key Engineering Materials, 330–332, 1289–1292.

    Article  Google Scholar 

  15. Kunihiko, W., Mari, T., Yasushi, M., & Fumihiro, Y. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.

    Article  Google Scholar 

  16. Meng, L. Z., Gong, S. Z., & He, Y. B. (1997). Organic spectroscopy (pp. 265–290). Hubei: Wuhan University.

    Google Scholar 

  17. Wang, M. (2008). MsD thesis, Qing Dao University, Qing Dao, China.

  18. Cheng, K. C., & Jeffrey, M. C. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16, 1033–1045.

    Article  CAS  Google Scholar 

  19. Zhao, X. X., Zhu, P., Wang, M., & Dong, Z. H. (2009). The comparison between bacterial cellulose and regenerated bacterial cellulose on structure and properties. Synthetic Fibre, 38, 6–10.

    CAS  Google Scholar 

  20. Ma, X. (2003). PhD thesis, Tianjin University of Technology, Tianjin, China.

  21. Huang, D., & Wang, Q. L. (2008). Discussion on the production of bacterial cellulose by Acetobacter xylinum QAX993 fermentation conditions. China Brewing, 38, 36–37.

    Google Scholar 

  22. Oikawa, T., Morimo, T., & Ameyama, M. (1995). Production of cellulose from D-arabitol by Acetobacter xylinum. Bioscience, Biotechnology, and Biochemistry, 59(1564), 1565.

    Google Scholar 

  23. Tang, W. H., Jia, S., Jia, Y., & Yang, H. J. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World Journal of Microbiology and Biotechnology, 26, 125–131.

    Article  CAS  Google Scholar 

  24. Karathanos, V. T., Kanellopoulos, N. K., & Belessiotis, V. G. (1996). Development of porous structure during air drying of agricultural plant products. Journal of Food Engineering, 29(167), 183.

    Google Scholar 

  25. Um, I. C., Ki, C. S., Kweon, H., Lee, K. G., Lhm, D. W., & Park, Y. H. (2004). Wet spinning of silk Polymer II. Effect of drawing on the structure characteristics and properties of filament. International Journal of Biological Macromolecules, 34, 107–119.

    Article  CAS  Google Scholar 

  26. Czaja, W., Romanovicz, D., & Brown, R. M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403–411.

    Article  CAS  Google Scholar 

  27. Borzani, W., & Desouza, S. J. (1995). Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid-media. Biotechnology Letters, 17, 1271–1272.

    Article  CAS  Google Scholar 

  28. Yoshino, T., Asakura, T., & Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicon membrane. Journal of Fermentation and Bioengineering, 81, 32–36.

    Article  CAS  Google Scholar 

  29. Serafica, G., Mormino, R., & Bungay, H. (2002). Inclusion of solid particle in bacterial cellulose. Applied Microbiology and Biotechnology, 58, 756–760.

    Article  CAS  Google Scholar 

  30. Hornung, M., Ludwig, M., & Schmauder, H. P. (2007). Optimizing the production of bacterial cellulose in surface culture: a novel aeroso bioreactor working on a fed batch principle (part 3). Engineering in Life Sciences, 7, 35–41.

    Article  CAS  Google Scholar 

  31. Marx-Figini, M., & Pion, B. G. (1974). Kinetic investigations on biosynthesis of cellulose by Acetobacter xylinum. Biochimica et Biophysica Acta, 338, 382–393.

    Article  CAS  Google Scholar 

  32. Marx-Figini, M. (1982). The control of molecular weight and molecular weight distribution in the biogenesis of cellulose. In Cellulose and other natural polymer systems: biogenesis, structure, and degradation. Plenum, New York, pp. 243–271.

Download references

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (Grant No. 31160338) and Guizhou Province Science and Technology Fund (Grant No. [2010] 2066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Jiang, X. Structure and Properties of Bacterial Cellulose Produced Using a Trickling Bed Reactor. Appl Biochem Biotechnol 172, 3844–3861 (2014). https://doi.org/10.1007/s12010-014-0795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0795-4

Keywords

Navigation