Skip to main content
Log in

Enhanced Xylanase Performance in the Hydrolysis of Lignocellulosic Materials by Surfactants and Non-catalytic Protein

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Addition of additives has been confirmed to increase cellulase performance in the hydrolysis of lignocellulosic materials. In the hydrolysis of xylan-containing lignocellulosic biomass, xylanase can synergistically enhance the performance of cellulase. However, the role of additives in xylan hydrolysis by xylanase is not yet clear. In this work, with the presence of additives (bovine serum albumin, poly(ethylene glycol), and Tween), the hydrolysis of isolated xylan and the xylan in corn stover increased to different extents. Additives increased free xylanase in supernatants in the hydrolysis with xylanase, indicating the reduction of the adsorption of xylanase on corn stover and insoluble xylan. Enhanced hydrolysis of Avicel and corn stover by additives suggested that besides the prevention of unproductive binding of xylanase to lignin by additives, reducing the adsorption of xylanase on substrates was also contributed to enzymatic hydrolysis. The increment of xylanase activity by additives suggests that the additives were activators of xylanase. The results of this work indicate that the supplementation of additives could improve xylanase performance, synergistically enhanced the cellulose hydrolysis, and beneficial for the recycling of xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CBH:

Cellobiohydrolase

CEL:

Cellulase preparation

CS:

Corn stover

DM:

Dry matter

EG:

Endoglucanase

PEG:

Poly(ethylene glycol)

XYL:

Xylanase

References

  1. Szczodrak, J., & Fiedurek, J. (1996). Biomass and Bioenergy, 10, 367–375.

    Article  CAS  Google Scholar 

  2. Sánchez, Ó. J., & Cardona, C. A. (2008). Bioresource Technology, 99, 5270–5295.

    Article  Google Scholar 

  3. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels, Bioproducts and Biorefining, 1, 119–134.

    Article  Google Scholar 

  4. Zheng, Y., Pan, Z., Zhang, R., Wang, D., & Jenkins, B. (2008). Applied Biochemistry and Biotechnology, 146, 231–248.

    Article  CAS  Google Scholar 

  5. Zhang, J., Moilanen, U., Tang, M., & Viikari, L. (2013). Biotechnology Biofuels, 6, 18.

    Article  CAS  Google Scholar 

  6. Kristensen, J. B., Börjesson, J., Bruun, M. H., Tjerneld, F., & Jørgensen, H. (2007). Enzyme and Microbial Technology, 40, 888–895.

    Article  CAS  Google Scholar 

  7. Yang, B., & Wyman, C. E. (2008). Biofuels Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  8. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  9. García-Aparicio, M. P., Ballesteros, M., Manzanares, P., Ballesteros, I., González, A., & Negro, M. J. (2007). Applied Biochemistry and Biotechnology, 136–140, 353–366.

    Article  Google Scholar 

  10. Qing, Q., Yang, B., & Wyman, C. E. (2010). Bioresource Technology, 101, 5941–5951.

    Article  CAS  Google Scholar 

  11. Kaar, W. E., & Holtzapple, M. T. (1998). Biotechnology and Bioengineering, 59(4), 419–427.

    Article  CAS  Google Scholar 

  12. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  13. Börjesson, J., Peterson, R., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 40, 754–762.

    Article  Google Scholar 

  14. Sipos, B., Dienes, D., Schleichera, Á., Perazzini, R., Crestini, C., Siika-aho, M., et al. (2010). Enzyme and Microbial Technology, 47, 84–90.

    Article  CAS  Google Scholar 

  15. Seo, D., Fujit, H., & Sakoda, A. (2011). Bioresource Technology, 102, 9605–9612.

    Article  CAS  Google Scholar 

  16. Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94(4), 611–617.

    Article  CAS  Google Scholar 

  17. Kumar, R., & Wyman, C. E. (2009). Biotechnology and Bioengineering, 102(6), 1544–1557.

    Article  CAS  Google Scholar 

  18. Börjesson, J., Engqvist, M., Sipos, B., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 41, 186–195.

    Article  Google Scholar 

  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Golden, CO: National Renewable Energy Laboratory.

  20. Ryan, S. E., Nolan, K., Thompson, R., Gubitz, G. M., Savage, A., & Tuohy, G. M. (2003). Enzyme and Microbial Technology, 33, 775–785.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Xu, X., Zhang, Y., & Li, J. (2011). Biotechnology and Bioprocess Engineering, 16, 930–936.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  23. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  24. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Zhang, J., Tuomainen, P., Siika-Aho, M., & Viikari, L. (2011). Bioresource Technology, 102(19), 9090–9095.

    Article  CAS  Google Scholar 

  26. Zilliox, C., & Debeire, P. (1998). Applied Microbiology and Biotechnology, 22, 58–63.

    CAS  Google Scholar 

  27. Selig, M. J., Knoshaug, E. P., Adney, W. S., Himmel, M. E., & Decker, S. R. (2008). Bioresource Technology, 99, 4997–5005.

    Article  CAS  Google Scholar 

  28. Kim, T. Y., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47.

    Article  CAS  Google Scholar 

  29. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., et al. (2005). Enzyme and Microbial Technology, 37, 175–184.

    Article  CAS  Google Scholar 

  30. Tu, M., Pan, X., & Saddler, J. N. (2009). Journal of Agricultural and Food Chemistry, 57, 7771–7778.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (31270622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Sun, Z., Xin, D. et al. Enhanced Xylanase Performance in the Hydrolysis of Lignocellulosic Materials by Surfactants and Non-catalytic Protein. Appl Biochem Biotechnol 172, 2106–2118 (2014). https://doi.org/10.1007/s12010-013-0673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0673-5

Keywords

Navigation