Skip to main content

Advertisement

Log in

Fuzzy Control with Genetic Algorithm in a Batch Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the growth medium temperature in a batch bioreactor was controlled at the set point by using fuzzy model-based control method. Fuzzy control parameters which are membership functions and relation matrix were found using genetic algorithm. Heat input given from the immersed heater and the cooling water flow rate were selected as the manipulated variables in order to control the growth medium temperature in the bioreactor. Controller performance was tested in the face of different types of input variables. To eliminate the noise on the temperature measurements, first-order filter was used in the control algorithm. The achievement of the temperature control was analyzed in terms of both microorganism concentration which was reached at the end of the stationary phase and the performance criteria of Integral of the Absolute Error. It was concluded that the cooling flow rate was suitable as manipulated variable with regard to microorganism concentration. On the other hand, performance of the controller was satisfactory when the heat input given from the immersed heater was manipulated variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A T :

Heat transfer surface area, m2

C S :

Substrate concentration, g substrate /L

C X :

Microorganism (yeast) concentration, g cell /L

k d :

First-order death-rate constant

m C :

Cooling water flow rate, g/s

N :

Population size

OUR:

Oxygen uptake rate, g O2 /L.h

Q GR :

Generated reaction heat, J

p c :

Probability of crossover

p m :

Probability of mutation

t :

Time, h, s

T :

Bioreactor temperature, °C

Tc:

Mean temperature of cooling water, °C

Tci :

Inlet temperature of cooling water, °C

Tco :

Outlet temperature of cooling water, °C

U :

Overall heat transfer coefficient, J/m2 s °C

V C :

Volume of cooling water, cm3

V L :

Volume of growth medium, cm3

Y X/S :

Substrate yield coefficient, g cell/g substrate

Y X/O2 :

Oxygen yield coefficient, g cell/g O2

1/Y H :

Metabolic heat evolved per gram of cell mass produced, J/g cell

μ :

Specific growth rate, 1/h

ρ :

Growth medium density, g/cm3

ρ C :

Cooling water density, g/cm3

ΔH S :

Heat of combustion of the substrate, J/mol substrate

ΔH C :

Heat of combustion of cells, J/g cell

References

  1. Harley, T. (1995). Trends in Food Science & Technology, 6(4), 103–110.

    Article  Google Scholar 

  2. Bursali, N., Akay, B., Ertunc, S., Hapoglu, H., & Alpbaz, M. (2001). Food Bioproducts Process, 79(C1), 27–34.

    Article  CAS  Google Scholar 

  3. Akay, B., Ertunc, S., Kahvecioglu, A., Hapoglu, H., & Alpbaz, M. (2002). Food Bioproducts Process, 80(C1), 28–38.

    Article  Google Scholar 

  4. Akay, B., Ertunc, S., Bursali, N., Hapoglu, H., & Alpbaz, M. (2003). Chemical Engineering Communications, 190(5–8), 999–1017.

    Article  CAS  Google Scholar 

  5. Ertunc, S., Akay, B., Bursali, N., Hapoğlu, H., & Alpbaz, M. (2003). Food Bioproducts Process, 81(C4), 327–335.

    Article  CAS  Google Scholar 

  6. Ertunc, S., Akay, B., Boyacioglu, H., & Hapoglu, H. (2009). Food Bioproducts Process, 87(C1), 46–55.

    Article  CAS  Google Scholar 

  7. Honda, H., & Kobayashi, T. (2000). Journal of Bioscience and Bioengineering, 89(5), 401–408.

    Article  CAS  Google Scholar 

  8. O’Connor, B., Riverol, C., Kelleher, P., Plant, N., Bevan, R., Hinchy, E., & D’Arcy, J. (2002). Food Control, 13, 23–31.

    Article  Google Scholar 

  9. Zhou, Y., & Lai, L. (2000). IEEE Transactions on Industry Applications, 36(1), 93–97.

    Article  Google Scholar 

  10. Altinten, A., Erdogan, S., Hapoglu, H., & Alpbaz, M. (2003). Computers and Chemical Engineering, 27(7), 1031–1040.

    Article  CAS  Google Scholar 

  11. Altinten, A., Erdogan, S., Hapoglu, H., Alioglu, F., & Alpbaz, M. (2006). Chemical Engineering Research and Design (IChemE), 84(A11), 1012–1018.

    Article  CAS  Google Scholar 

  12. Altinten, A., Altindal, S., Erdogan, S., & Hapoglu, H. (2011). Journal of the Faculty of Engineering and Architecture of Gazi University, 26(3), 613–621.

  13. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison and Wesley, Reading M.A.

  14. Cardello, R. J., & San, K. Y. (1988). Biotechnology and Bioengineering, 32, 519–526.

    Article  CAS  Google Scholar 

  15. Newell, R.B., Lee P.L. (1989) Applied process control: a case study, Prentice Hall, 97–111.

  16. Gurocak, H. B. (1999). Fuzzy Sets and System, 108, 39–47.

    Article  Google Scholar 

  17. Karr, C.L., Meredith, D.L., Stanley, D.A. (1990) Minerals and Metallurgical Processing Control 90 Miner Metal Process Control ‘90, February 26–March 1, 53–60.

  18. Cordon, O., Herrera, F. (1995) A general study on genetic fuzzy systems, genetic algorithms in engineering and computer science, Wiley and Sons, pp. 33–57.

  19. Ahioğlu, S. (2005). Ms Thesis. Ankara, Turkey: Ankara University.

    Google Scholar 

  20. Silva, C. M., & Biscaia, J. (2003). Computers and Chemical Engineering, 27, 1327–1344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayla Altinten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahioğlu, S., Altinten, A., Ertunç, S. et al. Fuzzy Control with Genetic Algorithm in a Batch Bioreactor. Appl Biochem Biotechnol 171, 2201–2219 (2013). https://doi.org/10.1007/s12010-013-0488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0488-4

Keywords

Navigation