Skip to main content

Advertisement

Log in

Agrobacterium-Mediated Genetic Transformation of Pogostemon cablin (Blanco) Benth. Using Leaf Explants: Bactericidal Effect of Leaf Extracts and Counteracting Strategies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G. P., et al. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 8467–8471.

    Article  CAS  Google Scholar 

  2. Ingelbrecht, I., Breyne, P., Vancomperonolle, A., van Montagu, J. M., & Depicker, A. (1991). Gene, 109, 239–242.

    Article  CAS  Google Scholar 

  3. Hamilton, C. M., Frary, A., Lewis, C., & Tanskley, S. D. (1996). Proceedings of the National Academy of Sciences of the United States of America, 93, 9975–9979.

    Article  CAS  Google Scholar 

  4. Hiei, Y., Komari, T., Ishida, Y., & Saito, H. (2000). Breeding Research, 2, 205–213.

    Article  Google Scholar 

  5. Paul, A., Thapa, G., Basu, A., Mazumdar, P., Kalita, M. C., & Sahoo, L. (2010). Industrial Crops and Products, 32, 366–374.

    Article  CAS  Google Scholar 

  6. Kadotani, N., & Ikegami, M. (2002). Pest Management Science, 58, 1137–1142.

    Article  CAS  Google Scholar 

  7. Sugimura, Y., Kadotani, N., Ueda, Y., Shima, K., Kitajima, S., Furusawa, T., et al. (2005). Plant Cell, Tissue and Organ Culture, 82, 251–257.

    Article  CAS  Google Scholar 

  8. Ping, S. H., Yue, L. Y., Shan, S. T., & Eric, T. P. K. (2011). Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Plant Cell Tissue and Organ Culture. doi:10.1007/s11240-011-9976-9.

  9. Senthilkumar, C. S., Suresh kumar, M., & Rajasekara, P. M. (2010). International Journal of PharmTech Research, 2, 438–442.

    Google Scholar 

  10. Karami, O., Esna-ashari, M., Karimi Kurdistani, G., & Aghavaisi, B. (2009). Biologia Plantarum, 53, 201–212.

    Article  CAS  Google Scholar 

  11. Pitzschke, A., & Heribert, H. (2010). The EMBO Journal, 29, 1021–1032.

    Article  CAS  Google Scholar 

  12. Svabova, L., & Griga, M. (2008). Plant Cell, Tissue and Organ Culture, 95, 293–304.

    Article  CAS  Google Scholar 

  13. Lin, J., Opoku, A. R., Gelhheeb-Keller, M., Hutchings, A. D., Terblanche, S. E., Jager, A. K., et al. (1999). Journal of Ethnopharmacology, 68, 267.

    Article  CAS  Google Scholar 

  14. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–479.

    Article  CAS  Google Scholar 

  15. Bauer, A. W., Kirby, W. M. M., Sherries, J. C., & Truck, M. (1966). American Journal of Clinical Pathology, 45, 493–496.

    CAS  Google Scholar 

  16. Clinical and Laboratory Standards Institute. (2005). Performance Standards for Antimicrobial Susceptibility Testing (Document M100-Sl5). Villanova (PA): CLSI.

    Google Scholar 

  17. NCCLS. (2004). National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Susceptibility Testing Approved Standard M1OO-S14. Wayne, PA, USA: NCCLS.

    Google Scholar 

  18. Lee, Y. K., Ho, P. S., Low, C. S., Arvilommi, H., & Salminen, S. (2004). Applied and Environmental Microbiology, 70, 670–674.

    Article  CAS  Google Scholar 

  19. Bunthof, C. J., Bloemen, K., Breeuwer, P., Rombouts, F. M., & Abee, T. (2001). Applied and Environmental Microbiology, 67, 2326–2335.

    Article  CAS  Google Scholar 

  20. Hood, E. E., Gelvin, S. B., Melchers, L. S., & Hoekema, A. (1993). Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  21. Bondt, A. D., Eggermont, K., Druart, P., Vii, M. D., Goderis, I., Vanderleyden, J., et al. (1994). Plant Cell Reports, 13, 587–593.

    Article  Google Scholar 

  22. An, G., Evert, P.R., Mitra, A. and Ha, S.B. (1988) Plant molecular biology manual. Gelvin SB, Schilperoort RA (eds). Kluwer, Dordrecht, The Netherlands, pp 1–19

  23. Chilton, M. D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P., & Nester, E. W. (1974). Proceedings of the National Academy of Sciences of the United States of America, 71, 3672–3676.

    Article  CAS  Google Scholar 

  24. Jefferson, R. A. (1987). Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  25. Rogers, S. O., & Bendich, A. J. (1985). Plant Molecular Biology Reporter, 11, 333–337.

    Google Scholar 

  26. Sambrook, K. J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  27. Ravishankar, G. A., Bhyalakshmi, N., & Ramachandra Rao, S. (1999). Production of food additives. In K. G. Ramawat & J. M. Merillon (Eds.), Biotechnology: secondary metabolites (pp. 89–110). New Delhi: Oxford IBH.

    Google Scholar 

  28. Dornenburg, H. & Knorr, D. (1997). Food Technology 51, 47, 48, 50–52, 54.

  29. Scragg, A. H. (1997). The production of aromas by plant cell cultures. In T. Schepier (Ed.), Advances in biochemical engineering/ biotechnology, vol. 55 (pp. 239–263). Berlin: Springer.

    Google Scholar 

  30. Alfermann, A. W., & Petersen, M. (1995). Plant Cell, Tissue and Organ Culture, 43, 199–205.

    Article  CAS  Google Scholar 

  31. Rao, S. R., & Ravishankar, G. A. (2002). Biotechnology Advances, 20, 101–153.

    Article  CAS  Google Scholar 

  32. Bunrathep, S., Lockwood, G. B., Songsak, T., & Ruangrungsi, N. (2006). Science Asia, 32, 293–296.

    Article  CAS  Google Scholar 

  33. Kongkathip, N., Samang, P., Kongkathip, B., Pankaew, Y., Tanasombat, M., & Udomkusonsri, P. (2009). Kasetsart Journal (Natural Science), 43, 519–525.

    CAS  Google Scholar 

  34. Nychas, G. J. E. (1995). Natural antimicrobials from plants. In G. W. Gould (Ed.), New methods of food preservation. London: Blackie Academic Professional.

    Google Scholar 

  35. Gachkar, L., Yadegari, D., Rezaei, M. B., Taghizadeh, M., Alipoor, A. S., & Rasooli, I. (2007). Food Chemistry, 102, 898–904.

    Article  CAS  Google Scholar 

  36. Baydar, H., Sagdic, O., Ozkan, G., & Karadogan, T. (2004). Food Control, 15, 169–172.

    Article  CAS  Google Scholar 

  37. Sainsbury, M., & Sofowora, E. A. (1971). Phytochemistry, 10, 3309–3310.

    Article  CAS  Google Scholar 

  38. Martins, A. P., Salgueiro, L. R., & Vila, R. (1999). Planta Medica, 65, 187–189.

    Article  CAS  Google Scholar 

  39. Wu, H., Sparks, C., Amoah, B., & Jones, H. D. (2003). Plant Cell Reports, 21, 659–668.

    CAS  Google Scholar 

  40. Yi, X., & Yu, D. (2006). African Journal of Biotechnology, 5, 1989–1993.

    CAS  Google Scholar 

  41. Ding, L., Li, S., Gao, J., Wang, Y., Yang, G., & He, G. (2009). Molecular Biology Reports, 36, 29–36.

    Article  CAS  Google Scholar 

  42. Sandal, I., Saini, U., Lacroix, B., Bhattacharya, A., Ahuja, P. S., & Citovsky, V. (2007). Plant Cell Reports, 26, 169–176.

    Article  CAS  Google Scholar 

  43. Hamilton-Miller, J. M. T. (1995). Antimicrobial Agents and Chemotherapy, 39, 2375–2377.

    CAS  Google Scholar 

  44. Tschech, A., & Fuchs, G. (1987). Archives of Microbiology, 148, 213–217.

    Article  CAS  Google Scholar 

  45. Coleman, J. O. D. (1997). Trends in Plant Science, 2, 144–151.

    Article  Google Scholar 

  46. Rousseaux, S., Hartmann, A., & Soulas, G. (2001). FEMS Microbiology Ecology, 36, 211–222.

    Article  CAS  Google Scholar 

  47. Kalgutkar, A. S., Dalvie, D. K., O’Donnell, J. P., Taylor, T. J., & Sahakian, D. C. (2002). Current Drug Metabolism, 3, 379–424.

    Article  CAS  Google Scholar 

  48. Suzuki, S., & Nakano, M. (2002). Plant Cell Reports, 20, 835–841.

    Article  CAS  Google Scholar 

  49. Huang, X., & Wei, Z. (2005). Plant Cell, Tissue and Organ Culture, 83, 187–200.

    Article  Google Scholar 

  50. Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C., Duncan, D. R., et al. (1997). Plant Physiology, 115, 971–980.

    CAS  Google Scholar 

  51. Alimohammadi, M., & Bagherieh-Najjar, M. B. (2009). African Journal of Biotechnology, 8, 5142–5148.

    CAS  Google Scholar 

  52. Curtis, I. S., & Nam, H. G. (2001). Molecular Breeding, 8, 37–52.

    Article  Google Scholar 

  53. Graves, A. E., Goldman, S. L., Banks, S. W., & Graves, A. C. (1988). Journal of Bacteriology, 170, 2395–2400.

  54. Gelvin, S. B. (2006). Agrobacterium virulence gene induction. In K. Wang (Ed.), Methods in molecular biology: Agrobacterium protocols, vol 44 (pp. 77–84). Totowa: Humana Press.

    Google Scholar 

  55. Bolton, G. W., Nester, E. W., & Gordon, M. P. (1986). Science, 232, 983–985.

    Article  CAS  Google Scholar 

  56. Morris, J. W., & Morris, R. O. (1990). Proceedings of the National Academy of Sciences of the United States of America, 87, 3614–3618.

    Article  CAS  Google Scholar 

  57. Delmotte, F. M., Delay, D., Cizeau, J., Guerin, B., & Leple, J. C. (1991). Phytochemistry, 30, 3549–3552.

    Article  CAS  Google Scholar 

  58. Dye, F., Berthelot, K., Griffon, B., Delay, D., & Delmotte, F. M. (1997). Biochemie, 79, 3–6.

    Article  CAS  Google Scholar 

  59. Fortin, C., Nester, E. W., & Dion, P. (1992). Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone. Journal of Bacteriology, 174, 5676–5685.

    CAS  Google Scholar 

  60. Cangelosi, G. A., Ankenbauer, R. G., & Nester, E. W. (1990). Proceedings of the National Academy of Sciences of the United States of America, 87, 6708–6712.

    Article  CAS  Google Scholar 

  61. Henzi, M. X., Christey, M. C., & McNeil, D. L. (2000). Plant Cell Reports, 19, 994–999.

    Article  CAS  Google Scholar 

  62. Stachel, S. E., Messens, E., Van Montagu, M., & Zambryski, P. (1985). Nature, 318, 624–629.

    Article  Google Scholar 

  63. Nebauer, S. G., Arrillaga, I., Castillo-Agudol, L. D., & Segura, J. (2000). Molecular Breeding, 6, 539–552.

    Article  CAS  Google Scholar 

  64. Boase, M. R., Bradley, J. M., & Borst, N. K. (1998). Plant Science, 139, 59–69.

    Article  CAS  Google Scholar 

  65. Hassanein, A., Chevreau, E., & Dorion, N. (2005). Plant Science, 169, 532–541.

    Article  CAS  Google Scholar 

  66. Kumar, N., Pandey, S., Bhattacharya, A., & Ahuja, P. S. (2004). Journal of Biology, 29, 309–317.

    Google Scholar 

  67. Van Altvorst, A. C., Riksen, T., Koehorst, H., & Dons, H. J. M. (1995). Transgenic Research, 4, 105–113.

    Article  Google Scholar 

  68. da Silva, J. A. T. (2005). Plant Science, 169, 1046–1058.

    Article  Google Scholar 

  69. Ovesna, J., Ptacek, L., & Opatrny, Z. (1993). Biologia Plantarum, 35, 107–112.

    Article  Google Scholar 

  70. Mazumdar, P., Basu, A., Paul, A., Mahanta, C., & Sahoo, L. (2010). South African Journal of Botany, 76, 337–344.

    Article  Google Scholar 

  71. Sunilkumar, G., & Rathore, K. S. (2001). Molecular Breeding, 8, 37–52.

    Article  CAS  Google Scholar 

  72. Sreeramanan, S., Maziah, M., Abdullah, M. P., Sariah, M., & Xavier, R. (2006). Asian Journal of Plant Sciences, 5, 468–480.

    Article  Google Scholar 

  73. Sangwan, R. S., Bougeois, Y., Brown, S., Vasseur, G., & Sangwan-Norreel, B. (1992). Planta, 188, 439–456.

    Article  CAS  Google Scholar 

  74. Sorvari, S., Ulvinen, S., Hietaranta, T., & Hiirsalmi, H. (1993). Horticultural Science, 28, 55–57.

    Google Scholar 

  75. Birch, R. G. (1997). Annual Review of Plant Physiology and Plant Molecular Biology, 48, 297–326.

    Article  CAS  Google Scholar 

  76. Barcelo, M., Mansouri, E. L., Mercado, J. A., Quesada, M. A., & Alfaro, F. P. (1998). Plant Cell, Tissue and Organ Culture, 54, 29–36.

    Article  Google Scholar 

  77. Chateau, S., Sangwan, R. S., & Sangwan-Norreel, B. S. (2000). Journal of Experimental Botany, 51, 1961–1968.

    Article  CAS  Google Scholar 

  78. Cordero de Mesa, M., Jimenez-Bermudez, S., Pliego-Alfaro, F., Quesada, M. A., & Mercado, J. A. (2000). Aust. Journal of Plant Physiology, 27, 1093–1100.

    Google Scholar 

  79. Srivatanakul, M., Park, S. H., Salas, M. G., & Smith, R. H. (2001). Journal of Plant Physiology, 158, 255–260.

    Article  CAS  Google Scholar 

  80. Alsheikh, M. K., Suso, H. P., Robson, M., Battey, N. H., & Wetten, A. (2002). Plant Cell Reports, 20, 1173–1180.

    Article  CAS  Google Scholar 

  81. Ghorbel, R., Dominguez, A., Navarro, L., & Pena, L. (2000). Tree Physiology, 20, 1183–1189.

    Article  Google Scholar 

  82. Ainsley, P. J., Collins, G. G., & Sedgley, M. (2001). The Journal of Horticultural Science and Biotechnology, 76, 522–528.

    CAS  Google Scholar 

  83. Su, J., Duan, R. Q., Hu, C. Q., Li, Y. P., & Wang, F. (2002). Fujian Journal of Agricultural Sciences, 17, 241–243.

    Google Scholar 

  84. Folta, K. M., & Dhingra, A. (2006). In Vitro Cellular and Developmental Biology-Plant, 42, 482–490.

    Article  CAS  Google Scholar 

  85. Montoro, P., Rattana, W., Pujade-Renaud, V., Michaux-Ferrieere, N., Monkolsook, Y., Kanthapura, R., et al. (2003). Plant Cell Reports, 21, 1095–1102.

    Article  CAS  Google Scholar 

  86. Cervera, M., Pina, J. A., Juarez, J., Navarro, L., & Pena, L. (1998). Plant Cell Reports, 18, 271–278.

    Article  CAS  Google Scholar 

  87. Dronne, S., Moja, S., Jullien, F., Berger, F., & Caissard, J. C. (1999). Trans Research, 8, 335–347.

    Article  CAS  Google Scholar 

  88. Niu, X., Li, X., Veronese, P., Bressan, R. A., Weller, S. C., & Hasegawa, P. M. (2000). Plant Cell Reports, 19, 304–310.

    Article  CAS  Google Scholar 

  89. Alvarez, R., & Ordas, R. J. (2007). Plant Cell, Tissue and Organ Culture, 91, 45–52.

    Article  CAS  Google Scholar 

  90. Zhang, H. M., & Wang, J. L. (2005). Biotech, 15, 68–70.

    Google Scholar 

  91. Dong, J. Z., Yang, M. Z., Jia, S. R., & Chua, N. H. (1991). Biotech, 9, 858–863.

    Article  CAS  Google Scholar 

  92. Li, X. G., Liu, C. N., & Ritchie, S. W. (1992). Plant Molecular Biology, 20, 1037–1048.

    Article  CAS  Google Scholar 

  93. Manickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhaka, R. B., Selvaraj, N., Vasudevan, A., et al. (2004). Plant Cell Reports, 23, 134–143.

    Article  CAS  Google Scholar 

  94. Lipetz, J. (1966). Cancer Research, 26, 1597–1605.

    CAS  Google Scholar 

  95. Firek, S., Özcan, S., Warner, S. A. J., & Draper, J. (1993). Plant Molecular Biology, 22, 129–142.

    Article  CAS  Google Scholar 

  96. Özcan, S., Firek, S., & Draper, J. (1993). Biotech, 11, 218–221.

    Article  Google Scholar 

  97. Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” Tool. Microbiology and Molecular Biology Reviews, 67, 16–37.

    Article  CAS  Google Scholar 

  98. Dillen, W., DeClercq, J., Kapila, J., Zambre, M., Van Montagu, M., & Angenon, G. (1997). The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. The Plant Journal, 12, 1459–1463.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. K. Veluthambi, MKU, Madurai, India for Agrobacterium strain and the Center for Application of Molecular Biology to International Agriculture (CAMBIA), Australia for pCAMBIA2301. The research was partially supported by a program support grant from the Department of Biotechnology (DBT), Government of India. AP and DPS are grateful to DBT and SB to the Council of Scientific and Industrial Research (CSIR) for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, A., Bakshi, S., Sahoo, D.P. et al. Agrobacterium-Mediated Genetic Transformation of Pogostemon cablin (Blanco) Benth. Using Leaf Explants: Bactericidal Effect of Leaf Extracts and Counteracting Strategies. Appl Biochem Biotechnol 166, 1871–1895 (2012). https://doi.org/10.1007/s12010-012-9612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9612-0

Keywords

Navigation