Skip to main content
Log in

Studies of Ciprofloxacin Encapsulation on Alginate/Pectin Matrixes and Its Relationship with Biodisponibility

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Screening of ciprofloxacin (Cip) with selected biopolymers brings about 90% antibiotic interactions with a coacervate composed of alginate/high metoxylated pectin in 2:1 ratio. Fourier transform infrared spectroscopy analysis provides information about the nature of this interaction, revealing ionic and hydrophobic patterns among the molecules. Alginate/high methoxylated pectin gel microspheres developed by ionic gelation encapsulates 46.8 ± 5.0% Cip. The gel matrix can release Cip in a sustained manner, releasing 42.7 ± 0.2% in 2 h under simulated stomach pH conditions, and 83.3 ± 1.1% Cip release in 80 mM phosphate at pH = 7.40 (intestinal). The increase of sodium chloride from 50 to 200 mM implies a Cip release from 69.0 ± 1.5% to 95.1 ± 3.6% respectively in 2 h. Scanning electron microscopy revealed the cohesive effect of HM pectin over alginate molecules on the microsphere surface. Those results guarantee all Cip contained in the alginate/HM pectin microspheres could be released in an established kinetic profile along the gastrointestinal tract, avoiding the Cip undesirable side effects during absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Appelbaum, P. C., & Hunter, P. A. (2000). International Journal of Antimicrobial Agents, 16, 5–15.

    Article  CAS  Google Scholar 

  2. Oliphantk, C. M., & Green, G. M. (2002). American Family Physician, 65, 455–464.

    Google Scholar 

  3. Musiol, R., Serda, M., Hensel-Bielowka, S., & Polanski, J. (2010). Current Medicinal Chemistry, 17, 1960–1973.

    Article  CAS  Google Scholar 

  4. Hernández-Borrell, J., & Montero, M. T. (2003). International Journal of Pharmaceutics, 252, 149–157.

    Article  Google Scholar 

  5. Tianfang Ge, D., Law, P. Y. P., Kong, S.-K., & Ho, Y.-Y. (2009). Toxicology Letters, 184, 81–84.

    Article  Google Scholar 

  6. Seedher, N., & Agarwal, P. (2010). Journal of Luminescence, 130, 1841–1848.

    Article  CAS  Google Scholar 

  7. Maurer, N., Wong, K. F., Hope, M. J., & Cullis, P. R. (1998). Biochimica et Biophysica Acta-Biomembranes, 1374, 9–20.

    Article  CAS  Google Scholar 

  8. Barbosa, J., Barrón, D., Jiménez-Lozano, E., & Sanz-Nebot, V. (2001). Analytical Chimica Acta, 437, 309–321.

    Article  CAS  Google Scholar 

  9. Srinatha, A., & Pandit, J. K. (2008). Drug Delivery, 15, 471–476.

    Article  CAS  Google Scholar 

  10. Conil, J.-M., Georges, B., de Lussy, A., Khachman, D., Seguin, T., Ruiz, S., et al. (2008). International Journal of Antimicrobial Agents, 32, 505–510.

    Article  CAS  Google Scholar 

  11. Dornish, M., Kaplan, D., & Skaugrud, Ø. (2001). Annual New York Academy of Sciences, 944, 388–397.

    Article  CAS  Google Scholar 

  12. Liu, L., Fishman, M. L., Kost, J., & Hicks, K. B. (2003). Biomaterials, 24, 3333–3343.

    Article  CAS  Google Scholar 

  13. Thakur, B. R., Singh, R. K., & Handa, A. K. (1997). Critical Reviews in Food Science and Nutrition, 37, 47–73.

    Article  CAS  Google Scholar 

  14. Plaschina, I. G., Braudo, E. E., & Tolstoguzov, V. B. (1978). Carbohydrate Research, 60, 1–8.

    Article  CAS  Google Scholar 

  15. Pavlath, A. E., Voisin, A., & Robertson, G. H. (1999). Macromolecular Symposium, 140, 107–113.

    Article  CAS  Google Scholar 

  16. Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., & Williams, P. A. (2008). Carbohydrate Polymers, 72, 334–341.

    Article  CAS  Google Scholar 

  17. Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Food Research International, 43, 111–117.

    Article  CAS  Google Scholar 

  18. Walkenström, P., Kidman, S., Hermansson, A.-M., Rasmussen, P. B., & Hoegh, L. (2003). Food Hydrocolloids, 17, 593–603.

    Article  Google Scholar 

  19. Wingender, J., Volz, S., & Winkler, U. K. (1987). Applied Microbiology and Biotechnology, 27, 139–145.

    Article  CAS  Google Scholar 

  20. Sun, J., Sakai, S., Tauchi, Y., Deguchi, Y., Chen, J., Zhang, R., et al. (2002). European Journal of Pharmaceutics and Biopharmaceutics, 54, 51–58.

    Article  CAS  Google Scholar 

  21. Breda, S. A., Jimenez-Kairuz, A. F., Manzo, R. H., & Olivera, M. E. (2009). International Journal of Pharmaceutics, 371, 106–113.

    Article  CAS  Google Scholar 

  22. Martinsen, A., Skjak-Braek, G., & Smidsrod, O. (1989). Biotechnology and Bioengineering, 33, 79–89.

    Article  CAS  Google Scholar 

  23. Li, Z., Hong, H., Liao, L., Ackley, C. J., Schulz, L. A., MacDonald, R. A., et al. (2011). Colloids and Surfaces. B, Biointerfaces, 88, 339–344.

    Article  CAS  Google Scholar 

  24. Purcell, J. M., & Fishman, M. L. (1987). Carbohydrate Research, 159, 185–190.

    Article  CAS  Google Scholar 

  25. Einhorn-Stoll, U., Hatakeyama, H., & Hatakeyama, T. (2011). Food Hydrocolloids. doi:10.1016/j.foodhyd.2011.08.019.

  26. Rouge, N., Buri, P., & Doelker, E. (1996). International Journal of Pharmaceutics, 136, 117–139.

    Article  CAS  Google Scholar 

  27. Wang, L., & Nancollas, G. H. (2008). Chemical Reviews, 108, 4628–4669.

    Article  CAS  Google Scholar 

  28. Bajpai, S. K., & Sharma, S. (2004). Reactive and Functional Polymers, 59, 129–140.

    Article  CAS  Google Scholar 

  29. Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J., & Rinaudo, M. (1999). Biomaterials, 20, 1427–1435.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Técnica (ANPCyT) of Argentina. We want to thank Dr. Paul Dumas (SMIS beam line, Soleil Synchrotron Facility, France) for his kind support and expertise during the sample analysis. We thank CPKelco (Buenos Aires, Argentina) for the donation of pectin samples used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo R. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islan, G.A., de Verti, I.P., Marchetti, S.G. et al. Studies of Ciprofloxacin Encapsulation on Alginate/Pectin Matrixes and Its Relationship with Biodisponibility. Appl Biochem Biotechnol 167, 1408–1420 (2012). https://doi.org/10.1007/s12010-012-9610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9610-2

Keywords

Navigation