Abstract
Aerobic granulation was developed in overcoming the problem of biomass washout often encountered in activated sludge processes. The novel approach to developing fluffy biosolids into dense and compact granules offers a new dimension for wastewater treatment. Compared with conventional biological flocs, aerobic granules are characterized by well-defined shape and compact buildup, superior biomass retention, enhanced microbial functions, and resilient to toxicity and shock loading. This review provides an up-to-date account on development in aerobic granulation and its applications. Granule characterization, factors affecting granulation, and response of granules to various environmental and operating conditions are discussed. Maintaining granule of adequate structural stability is one of the main challenges for practical applications of aerobic granulation. This paper also reviews recent advances in addressing granule stability and storage for use as inoculums, and as biomass supplement to enhance treatment efficiency. Challenges and future work of aerobic granulation are also outlined.
Similar content being viewed by others
References
Mishima, K., & Nakamura, M. (1991). Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Science and Technology, 23, 981–990.
Morgenroth, E., Sherden, T., Van Loosdrecht, M. C. M., Heijnen, J. J., & Wilderer, P. A. (1997). Aerobic granular sludge in a sequencing batch reactor. Water Research, 31, 3191–3194.
Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33, 2283–2290.
Peng, D., Bernet, N., Delgenes, J. P., & Moletta, R. (1999). Aerobic granular sludge—a case report. Water Research, 33, 890–893.
Etterer, T., & Wilderer, P. A. (2001). Generation and properties of aerobic granular sludge. Water Science and Technology, 43, 19–26.
Tay, J. H., Liu, Q. S., & Liu, Y. (2001). Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 91, 68–75.
Liu, Y., & Tay, J. H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 36, 1653–1665.
Adav, S. S., Lee, D. J., Show, K. Y., & Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnology Advances, 26, 411–423.
Moy, B. Y. P., Tay, J. H., Toh, S. K., Liu, Y., & Tay, S. T. L. (2002). High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology, 34, 407–412.
Tay, J. H., Tay, S. T. L., Liu, Y., Show, K. Y., & Ivanov, V. (2006). Biogranulation technologies for wastewater treatment. New York: Elsevier.
Lin, Y. M., Liu, Y., & Tay, J. H. (2003). Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor. Applied Microbiology and Biotechnology, 62, 430–435.
Ho, K. L., Chen, Y. Y., Li, N. B., & Lee, D. J. (2010). Degrading high-strength phenol using aerobic granular sludge. Applied Microbiology and Biotechnology, 85, 2009–2015.
Liu, Y., Yang, S. Y., Tay, J. H., Liu, Q. S., Qin, L., & Li, Y. (2004). Cell hydrophobicity is a triggering force of biogranulation. Enzyme and Microbial Technology, 34, 371–379.
Yang, S. F., Tay, J. H., & Liu, Y. (2004). Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios. Current Microbiology, 49, 42–46.
Chen, Y. C., Lin, C. J., Chen, H. L., Fu, S. Y., & Zhan, H. Y. (2009). Cultivation of biogranules in a continuous flow reactor at low dissolved oxygen. Water, Air, and Soil Pollution: Focus, 9, 213–221.
Li, J., Garny, K., Neu, T., He, M., Lindenblatt, C., & Horn, H. (2007). Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors. Water Science and Technology, 55, 403–411.
Liu, Y., & Liu, Q. S. (2006). Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 24, 115–127.
Zheng, Y. M., Yu, H. Q., Liu, S. J., & Liu, X. Z. (2006). Formation and instability of aerobic granules under high organic loading conditions. Chemosphere, 63, 1791–1800.
Liu, Q. S., Tay, J. H., & Liu, Y. (2003). Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environmental Technology, 24, 1235–1243.
Qi, L., Li, Y., & Tay, J. H. (2004). Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering, 21, 7–52.
Tay, S. T. L., Ivanov, V., Yi, S., Zhuang, W. Q., & Tay, J. H. (2002). Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microbiology Ecology, 44, 278–285.
Toh, S. K., Tay, J. H., Moy, B. Y. P., Ivanov, V., & Tay, S. T. L. (2003). Size-effect on the physical characteristics of the aerobic granule in a SBR. Applied Microbiology and Biotechnology, 60, 687–695.
Yang, S. F., Liu, Q. S., Tay, J. H., & Liu, Y. (2004). Growth kinetics of aerobic granules developed in sequencing batch reactors. Letters in Applied Microbiology, 38, 106–112.
Adav, S. S., Lee, D. J., & Tay, J. H. (2007). Activity and structure of stored aerobic granules. Environmental Technology, 28, 1227–1235.
Tay, J. H., Liu, Q. S., & Liu, Y. (2001). The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology, 33, 222–226.
Yang, S. F., Liu, Y., & Tay, J. H. (2003). A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. Journal of Biotechnology, 106, 77–86.
Zhu, J., & Wilderer, P. A. (2003). Effect of extended idle conditions n structure and activity of granular activated sludge. Water Research, 37, 2013–2018.
Chisti, Y. (1999). Mass transfer. In M. C. Flickinger & S. W. Drew (Eds.), Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol. 3. New York: Wiley.
Tay, J. H., Liu, Q. S., & Liu, Y. (2003). Shear force influences the structure of aerobic granules cultivated in sequencing batch reactor. 5th International conference on biofilm systems, 14–19 September, Cape Town, South Africa
Tay, J. H., Liu, Q. S., & Liu, Y. (2004). The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Science and Technology, 49, 35–40.
Liu, Y., & Tay, J. H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22, 533–563.
Yi, S., Tay, J. H., Maszenan, A. M., & Tay, S. T. L. A. (2003). Culture-independent approach for studying microbial diversity in aerobic granules. Water Science and Technology, 47, 283–290.
Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., & Hirata, A. (2003). Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Research, 37, 4965–4973.
Adav, S. S., Lee, D. J., Show, K. Y., & Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnology Advances, 26, 411–423.
Lee, D. J., Chen, Y. Y., Show, K. Y., Whiteley, C. G., & Tay, J. H. (2010). Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnology Advances, 28, 919–934.
Snaidr, J., Amann, R., Huber, I., Ludwig, W., & Schleifer, K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology, 63, 2884–2896.
Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66, 2400–2407.
Jiang, H. L., Tay, J. H., Maszenan, A. M., & Tay, S. T. L. (2004). Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Applied and Environmental Microbiology, 70, 6767–6775.
Weber, S. D., Ludwig, W., Schleifer, K. H., & Fried, J. (2007). Microbial composition and structure of aerobic granular sewage biofilms. Applied and Environmental Microbiology, 73, 6233–6240.
Adav, S. S., & Lee, D. J. (2008). Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. Journal of Hazardous Materials, 154, 1120–1126.
Adav, S. S., Chen, M. Y., Lee, D. J., & Ren, N. Q. (2007). Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnology and Bioengineering, 96, 844–852.
Adav, S. S., Lee, D. J., & La, J. Y. (2007). Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Applied Microbiology and Biotechnology, 77, 175–182.
Adav, S. S., Lee, D. J., & Ren, N. Q. (2007). Biodegradation of pyridine using aerobic granules in the presence of phenol. Water Research, 41, 2903–2910.
Adav, S. S., Lee, D. J., & Tay, J. H. (2007). Extracellular polymeric substances and structural stability of aerobic granule. Water Research, 42, 1644–1650.
McSwain, B. S., Irvine, R. L., Hausner, M., & Wilderer, P. A. (2005). Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Applied and Environmental Microbiology, 71, 1051–1057.
Adav, S. S., Chen, M. Y., Lee, D. J., & Ren, N. Q. (2007). Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere, 67, 1566–1572.
Adav, S. S., & Lee, D. J. (2008). Physiological characterization and interactions of isolates in phenol-degrading aerobic granules. Applied Microbiology and Biotechnology, 78, 899–905.
Bos, R., van de Mei, H. C., & Busscher, H. J. (1999). Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiology Reviews, 23, 179–230.
Zita, A., & Hermansson, M. (1997). Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiology Letters, 18, 299–306.
Martienssen, M., Reichel, M., & Kohlweyer, U. (2001). Surface properties of bacteria from different wastewater treatment plants. Acta Biotechnologica, 21, 207–225.
Wilen, B. M., Onuki, M., Hermansson, M., Lumle, D., & Mino, T. (2007). Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Research, 42, 2300–2308.
Zhang, Z. J., Wu, W. W., & Wang, J. L. (2010). Granulation of completely autotrophic nitrifying sludge in sequencing batch reactor. Huanjing Kexue, 31, 140–146.
Adav, S. S., Lee, D. J., & Lai, J. Y. (2008). Intergenetic coaggregation of strains isolated from phenol-degrading aerobic granules. Applied Microbiology and Biotechnology, 79, 65–661.
Jiang, H. L., Tay, S. T. L., Maszenan, A. M., & Tay, J. H. (2006). Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiology Ecology, 57, 182–191.
Yang, S. F., Li, X. Y., & Yu, H. Q. (2008). Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochemistry, 43, 8–14.
Tay, J. H., Pan, S., He, Y. X., & Tay, S. T. L. (2004). Effect of organic loading rate on aerobic granulation: Part II. Characteristics of aerobic granules. Journal of Environment and Engineering, 130, 1102–1109.
Jiang, H. L., Tay, J. H., & Tay, S. T. L. (2002). Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Letters in Applied Microbiology, 35, 439–445.
Zheng, Y. M., Yu, H. Q., & Sheng, G. P. (2005). Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochemistry, 40, 645–650.
Tay, J. H., Yang, S. F., & Liu, Y. (2002). Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology and Biotechnology, 59, 332–337.
Arrojo, B., Mosquera-Corral, A., Garrido, J. M., & Mendez, R. (2004). Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 38, 3389–3399.
de Bruin, L. M. M., de Kreuk, M. K., van der Roest, H. F. R., Uijterlinde, C., & van Loosdrecht, M. C. M. (2004). Aerobic granular sludge technology: alternative for activated sludge. Water Science and Technology, 49, 1–7.
Schwarzenbeck, N., Borges, J. M., & Wilderer, P. A. (2005). Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Applied Microbiology and Biotechnology, 66, 711–718.
Su, K. Z., & Yu, H. Q. (2005). Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environmental Science and Technology, 39, 2818–2828.
Wang, S. G., Liu, X. W., Gong, W. X., Gao, B. Y., Zhan, D. H., & Yu, H. Q. (2007). Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technology, 98, 2142–2147.
Wang, D. Z., & Zhou, L. X. (2010). Cultivation of aerobic granular sludge and characterization of nitrobenzene-degrading. Huanjing Kexue, 31, 147–152.
Xiang, Z. X., Zhang, L. L., & Chen, J. M. (2009). Aniline removal by aerobic granules and high-efficiency aniline-degrading bacteria. Huanjing Kexue, 30, 3336–3341.
Tay, J. H., Liu, Q. S., & Liu, Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, 57, 227–233.
Hulshoff Pol, L. W., Heijnekamp, K., & Lettinga, G. (1988). The selection pressure as a driving force behind the granulation of anaerobic sludge. In G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, & L. W. Hulshoff Pol (Eds.), Granular anaerobic sludge: Microbiology and technology (pp. 153–161). Wageningen: Kluwer.
Kim, I. S., Kim, S. M., & Jang, A. (2008). Characterization of aerobic granules by microbial density at different COD loading rates. Bioresource Technology, 99, 18–25.
Wang, S. G., Gai, L. H., Zhao, L. J., Fan, M. H., Gong, W. X., Gao, B. Y., & Ma, Y. (2009). Aerobic granules for low-strength wastewater treatment: formation, structure, and microbial community. Chemical Technology & Biotechnology, 84, 1015–1020.
Liu, Y. Q., Moy, B., Kong, Y. H., & Tay, J. H. (2010). Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme and Microbial Technology, 46, 520–525.
Lopez, A., Dosta, J., & Mata-Alvarez, J. (2009). Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater. Water Science and Technology, 60, 1049–1054.
Liu, Y. Q., Wu, W. W., Tay, J. H., & Wang, J. L. (2007). Starvation is not a prerequisite for the formation of aerobic granules. Applied Microbiology and Biotechnology, 76, 211–216.
McSwain, B. S., Irvine, R. L., & Wilderer, P. A. (2004). The influence of settling time on the formation of aerobic granules. Water Science and Technology, 50, 195–202.
Hu, L., Wang, J., Wen, X., & Qian, Y. (2005). The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules. Process Biochemistry, 40, 5–11.
Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Aerobic granulation in sequencing batch reactors at different settling times. Bioresource Technology, 100, 5359–5361.
Bossier, P., & Verstraete, W. (1996). Triggers for microbial aggregation in activated sludge? Applied Microbiology and Biotechnology, l45, 1–6.
Castellanos, T., Ascencio, F., & Bashan, Y. (2000). Starvation-induced changes in the cell surface of Azospirillum lipoferum. FEMS Microbiology Ecology, 33, 1–9.
Liu, Y. Q., & Tay, J. H. (2008). Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresource Technology, 99, 980–985.
Wang, F., Yang, F., Zhang, X. W., Liu, Y., Zhang, H., & Zhou, J. (2005). Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors. World Journal of Microbiology and Biotechnology, 21, 1379–1384.
Li, A. J., Zhang, T., & Li, X. Y. (2010). Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions. Chemosphere, 78, 500–509.
Qin, L., Tay, J. H., & Liu, Y. (2004). Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 39, 579–584.
de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90, 761–769.
Williams, J. C., & Reyes, F. L. (2006). Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Science and Technology, 54, 139–146.
de Kreuk, M. K., McSwain, B. S., Bathe, S., Tay, S. T. L., Schwarzenbeck, & Wilderer, P. A. (2005). Discussion outcomes. Ede. In: Aerobic granular sludge. Water and Environmental Management Series. IWA Publishing, Munich 165–169.
Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007). Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure. Applied Microbiology and Biotechnology, 75, 685–691.
Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007). Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Research, 41, 884–892.
Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Functional consortium from aerobic granules under high organic loading rates. Bioresource Technology, 100, 3465–3470.
Adav, S. S., Lee, D. J., & Lai, J. Y. (2010). Potential cause of aerobic granular sludge breakdown at high organic loading rates. Applied Microbiology and Biotechnology, 85, 1601–1610.
Lemaire, R., Webb, R. I., & Yuan, Z. G. (2008). Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME, 2, 528–541.
Ng, P. H. (2002). Storage stability of aerobic granules cultivated in aerobic granular sludge blanket reactor. Final year report of Bachelor of Engineering 2002. Singapore, Nanyang Technological University
Wang, X. H., Zhang, H. M., Yang, F. L., Wang, Y. F., & Gao, M. M. (2008). Long-term storage and subsequent reactivation of aerobic granules. Bioresource Technology, 99, 8304–8309.
Zhu, J. (2004). Reply to comment by J. Zhu. Water Research, 38, 3467–3469.
Schmidt, J. E., & Ahring, B. K. (1994). Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Applied Microbiology and Biotechnology, 42, 457–462.
Zhang, L. L., Feng, X. X., Zhu, N. W., & Chen, J. M. (2007). Role of extracellular protein in the formation and stability of aerobic granules. Enzyme and Microbial Technology, 41, 551–557.
Adav, S. S., Lee, D. J., & Tay, J. H. (2008). Extracellular polymeric substances and structural stability of aerobic granules. Water Research, 42, 1644–1650.
Seviour, T., Pijuan, M., Nicholson, T., Keller, J., & Yuan, Z. G. (2010). Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Research, 43, 4469–4478.
Li, X. F., Li, Y. J., Liu, H., Hua, Z. Z., Du, G. C., & Chen, J. (2008). Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor. Separation and Purification Technology, 59, 26–33.
McSwain, B. S., Irvine, R. L., & Wilderer, P. A. (2004). The effect of intermittent feeding on aerobic granule structure. Water Science and Technology, 49, 19–25.
Sturm, B. S., & Irvine, R. L. (2008). Dissolved oxygen as a key parameter to aerobic granule formation. Water Science and Technology, 58, 781–787.
Mosquera-Corral, A., de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 39, 2676–2686.
Wan, J., & Sperandio, M. (2009). Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor. Chemosphere, 75, 220–227.
Dulekgurgen, E., Artan, N., Orhon, D., & Wilderer, P. A. (2008). How does shear affect aggregation in granular sludge sequencing batch reactors? Relations between shear, hydrophobicity, and extracellular polymeric substances. Water Science and Technology, 58, 267–276.
Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Proteolytic activity in stored aerobic granular sludge and structural integrity. Bioresource Technology, 100, 68–73.
de Kreuk, M. K., & van Loosdrecht, M. C. M. (2004). Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology, 49, 9–17.
Wana, J. F., Bessiere, Y., & Sperandio, M. (2009). Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift rector at reduced aeration rate. Water Research, 43, 5097–5108.
Mahoney, E. M., Varangu, L. K., Cairns, W. L., Kosaric, N., & Murray, R. G. E. (1987). The effect of calcium on microbial aggregation during UASB reactor start-up. Water Science and Technology, 19, 249–260.
Jiang, H. L., Tay, J. H., Liu, Y., & Tay, S. T. L. (2003). Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnology Letters, 25, 95–99.
Lin, Y. M., Wang, L., Chi, Z. M., & Liu, X. Y. (2008). Bacterial alginate role in aerobic granular bio-particles formation and settleability improvement. Separation Science and Technology, 43, 1642–1652.
Li, X. M., Liu, Q. Q., Yang, Q., Guo, L., Zeng, G. M., Hu, J. M., & Zheng, W. (2009). Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresource Technology, 100, 64–67.
Yang, S. F., Tay, J. H., & Liu, Y. (2004). Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering, 17, 41–48.
Shi, X. Y., Sheng, G. P., Li, X. Y., & Yu, H. Q. (2010). Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresource Technology, 101, 2960–2964.
Ren, T. T., Liu, L., Sheng, G. P., Li, X. W., Yu, H. Q., & Zhang, M. C. (2008). Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Research, 42, 3343–3352.
Liu, X. W., Sheng, G. P., & Yu, H. Q. (2009). Physicochemical characteristics of microbial granules. Biotechnology Advances, 27, 1061–1070.
Juang, Y. C., Adav, S. S., & Lee, D. J. (2010). Stable aerobic granules for continuous-flow reactors: precipitating calcium and iron salts in granular interiors. Bioresource Technology, 101, 8051–8057.
Ni, B. J., & Yu, H. Q. (2008). Storage and growth of denitrifiers in aerobic granules. Part I. Model development. Biotechnology and Bioengineering, 99, 314–323.
Ni, B. J., Yu, H. Q., & Xie, W. M. (2008). Storage and growth of denitrifiers in aerobic granules. Part II. Model calibration and verification. Biotechnology and Bioengineering, 99, 324–332.
Ni, B. J., Yu, H. Q., & Sun, Y. J. (2008). Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Research, 42, 1583–1594.
Juang, Y. J., Su, A., Fang, L. H., Lee, D. J., & Lai, J. Y. (2011). Fouling with aerobic granule membrane bioreactor. Water Science and Technology, 64(9), 1870–1875.
Acknowledgments
The authors gratefully acknowledge funding from Project NSFC No. 51176037 and the supports from the National Science Council.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Show, KY., Lee, DJ. & Tay, JH. Aerobic Granulation: Advances and Challenges. Appl Biochem Biotechnol 167, 1622–1640 (2012). https://doi.org/10.1007/s12010-012-9609-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-012-9609-8