Skip to main content

Advertisement

Log in

Aerobic Granulation: Advances and Challenges

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aerobic granulation was developed in overcoming the problem of biomass washout often encountered in activated sludge processes. The novel approach to developing fluffy biosolids into dense and compact granules offers a new dimension for wastewater treatment. Compared with conventional biological flocs, aerobic granules are characterized by well-defined shape and compact buildup, superior biomass retention, enhanced microbial functions, and resilient to toxicity and shock loading. This review provides an up-to-date account on development in aerobic granulation and its applications. Granule characterization, factors affecting granulation, and response of granules to various environmental and operating conditions are discussed. Maintaining granule of adequate structural stability is one of the main challenges for practical applications of aerobic granulation. This paper also reviews recent advances in addressing granule stability and storage for use as inoculums, and as biomass supplement to enhance treatment efficiency. Challenges and future work of aerobic granulation are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishima, K., & Nakamura, M. (1991). Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Science and Technology, 23, 981–990.

    CAS  Google Scholar 

  2. Morgenroth, E., Sherden, T., Van Loosdrecht, M. C. M., Heijnen, J. J., & Wilderer, P. A. (1997). Aerobic granular sludge in a sequencing batch reactor. Water Research, 31, 3191–3194.

    Article  CAS  Google Scholar 

  3. Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33, 2283–2290.

    Article  CAS  Google Scholar 

  4. Peng, D., Bernet, N., Delgenes, J. P., & Moletta, R. (1999). Aerobic granular sludge—a case report. Water Research, 33, 890–893.

    Article  CAS  Google Scholar 

  5. Etterer, T., & Wilderer, P. A. (2001). Generation and properties of aerobic granular sludge. Water Science and Technology, 43, 19–26.

    CAS  Google Scholar 

  6. Tay, J. H., Liu, Q. S., & Liu, Y. (2001). Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 91, 68–75.

    Article  Google Scholar 

  7. Liu, Y., & Tay, J. H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 36, 1653–1665.

    Article  CAS  Google Scholar 

  8. Adav, S. S., Lee, D. J., Show, K. Y., & Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnology Advances, 26, 411–423.

    Article  CAS  Google Scholar 

  9. Moy, B. Y. P., Tay, J. H., Toh, S. K., Liu, Y., & Tay, S. T. L. (2002). High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology, 34, 407–412.

    Article  Google Scholar 

  10. Tay, J. H., Tay, S. T. L., Liu, Y., Show, K. Y., & Ivanov, V. (2006). Biogranulation technologies for wastewater treatment. New York: Elsevier.

    Google Scholar 

  11. Lin, Y. M., Liu, Y., & Tay, J. H. (2003). Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor. Applied Microbiology and Biotechnology, 62, 430–435.

    Article  CAS  Google Scholar 

  12. Ho, K. L., Chen, Y. Y., Li, N. B., & Lee, D. J. (2010). Degrading high-strength phenol using aerobic granular sludge. Applied Microbiology and Biotechnology, 85, 2009–2015.

    Article  CAS  Google Scholar 

  13. Liu, Y., Yang, S. Y., Tay, J. H., Liu, Q. S., Qin, L., & Li, Y. (2004). Cell hydrophobicity is a triggering force of biogranulation. Enzyme and Microbial Technology, 34, 371–379.

    Article  CAS  Google Scholar 

  14. Yang, S. F., Tay, J. H., & Liu, Y. (2004). Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios. Current Microbiology, 49, 42–46.

    Article  CAS  Google Scholar 

  15. Chen, Y. C., Lin, C. J., Chen, H. L., Fu, S. Y., & Zhan, H. Y. (2009). Cultivation of biogranules in a continuous flow reactor at low dissolved oxygen. Water, Air, and Soil Pollution: Focus, 9, 213–221.

    Article  CAS  Google Scholar 

  16. Li, J., Garny, K., Neu, T., He, M., Lindenblatt, C., & Horn, H. (2007). Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors. Water Science and Technology, 55, 403–411.

    Article  CAS  Google Scholar 

  17. Liu, Y., & Liu, Q. S. (2006). Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 24, 115–127.

    Article  CAS  Google Scholar 

  18. Zheng, Y. M., Yu, H. Q., Liu, S. J., & Liu, X. Z. (2006). Formation and instability of aerobic granules under high organic loading conditions. Chemosphere, 63, 1791–1800.

    Article  CAS  Google Scholar 

  19. Liu, Q. S., Tay, J. H., & Liu, Y. (2003). Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environmental Technology, 24, 1235–1243.

    Article  CAS  Google Scholar 

  20. Qi, L., Li, Y., & Tay, J. H. (2004). Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering, 21, 7–52.

    Google Scholar 

  21. Tay, S. T. L., Ivanov, V., Yi, S., Zhuang, W. Q., & Tay, J. H. (2002). Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microbiology Ecology, 44, 278–285.

    Article  CAS  Google Scholar 

  22. Toh, S. K., Tay, J. H., Moy, B. Y. P., Ivanov, V., & Tay, S. T. L. (2003). Size-effect on the physical characteristics of the aerobic granule in a SBR. Applied Microbiology and Biotechnology, 60, 687–695.

    CAS  Google Scholar 

  23. Yang, S. F., Liu, Q. S., Tay, J. H., & Liu, Y. (2004). Growth kinetics of aerobic granules developed in sequencing batch reactors. Letters in Applied Microbiology, 38, 106–112.

    Article  CAS  Google Scholar 

  24. Adav, S. S., Lee, D. J., & Tay, J. H. (2007). Activity and structure of stored aerobic granules. Environmental Technology, 28, 1227–1235.

    Article  CAS  Google Scholar 

  25. Tay, J. H., Liu, Q. S., & Liu, Y. (2001). The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology, 33, 222–226.

    Article  CAS  Google Scholar 

  26. Yang, S. F., Liu, Y., & Tay, J. H. (2003). A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. Journal of Biotechnology, 106, 77–86.

    Article  CAS  Google Scholar 

  27. Zhu, J., & Wilderer, P. A. (2003). Effect of extended idle conditions n structure and activity of granular activated sludge. Water Research, 37, 2013–2018.

    Article  CAS  Google Scholar 

  28. Chisti, Y. (1999). Mass transfer. In M. C. Flickinger & S. W. Drew (Eds.), Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol. 3. New York: Wiley.

    Google Scholar 

  29. Tay, J. H., Liu, Q. S., & Liu, Y. (2003). Shear force influences the structure of aerobic granules cultivated in sequencing batch reactor. 5th International conference on biofilm systems, 14–19 September, Cape Town, South Africa

  30. Tay, J. H., Liu, Q. S., & Liu, Y. (2004). The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Science and Technology, 49, 35–40.

    CAS  Google Scholar 

  31. Liu, Y., & Tay, J. H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22, 533–563.

    Article  CAS  Google Scholar 

  32. Yi, S., Tay, J. H., Maszenan, A. M., & Tay, S. T. L. A. (2003). Culture-independent approach for studying microbial diversity in aerobic granules. Water Science and Technology, 47, 283–290.

    CAS  Google Scholar 

  33. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., & Hirata, A. (2003). Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Research, 37, 4965–4973.

    Article  CAS  Google Scholar 

  34. Adav, S. S., Lee, D. J., Show, K. Y., & Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnology Advances, 26, 411–423.

    Article  CAS  Google Scholar 

  35. Lee, D. J., Chen, Y. Y., Show, K. Y., Whiteley, C. G., & Tay, J. H. (2010). Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnology Advances, 28, 919–934.

    Article  CAS  Google Scholar 

  36. Snaidr, J., Amann, R., Huber, I., Ludwig, W., & Schleifer, K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology, 63, 2884–2896.

    CAS  Google Scholar 

  37. Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66, 2400–2407.

    Article  CAS  Google Scholar 

  38. Jiang, H. L., Tay, J. H., Maszenan, A. M., & Tay, S. T. L. (2004). Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Applied and Environmental Microbiology, 70, 6767–6775.

    Article  CAS  Google Scholar 

  39. Weber, S. D., Ludwig, W., Schleifer, K. H., & Fried, J. (2007). Microbial composition and structure of aerobic granular sewage biofilms. Applied and Environmental Microbiology, 73, 6233–6240.

    Article  CAS  Google Scholar 

  40. Adav, S. S., & Lee, D. J. (2008). Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. Journal of Hazardous Materials, 154, 1120–1126.

    Article  CAS  Google Scholar 

  41. Adav, S. S., Chen, M. Y., Lee, D. J., & Ren, N. Q. (2007). Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnology and Bioengineering, 96, 844–852.

    Article  CAS  Google Scholar 

  42. Adav, S. S., Lee, D. J., & La, J. Y. (2007). Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Applied Microbiology and Biotechnology, 77, 175–182.

    Article  CAS  Google Scholar 

  43. Adav, S. S., Lee, D. J., & Ren, N. Q. (2007). Biodegradation of pyridine using aerobic granules in the presence of phenol. Water Research, 41, 2903–2910.

    Article  CAS  Google Scholar 

  44. Adav, S. S., Lee, D. J., & Tay, J. H. (2007). Extracellular polymeric substances and structural stability of aerobic granule. Water Research, 42, 1644–1650.

    Article  CAS  Google Scholar 

  45. McSwain, B. S., Irvine, R. L., Hausner, M., & Wilderer, P. A. (2005). Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Applied and Environmental Microbiology, 71, 1051–1057.

    Article  CAS  Google Scholar 

  46. Adav, S. S., Chen, M. Y., Lee, D. J., & Ren, N. Q. (2007). Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere, 67, 1566–1572.

    Article  CAS  Google Scholar 

  47. Adav, S. S., & Lee, D. J. (2008). Physiological characterization and interactions of isolates in phenol-degrading aerobic granules. Applied Microbiology and Biotechnology, 78, 899–905.

    Article  CAS  Google Scholar 

  48. Bos, R., van de Mei, H. C., & Busscher, H. J. (1999). Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiology Reviews, 23, 179–230.

    CAS  Google Scholar 

  49. Zita, A., & Hermansson, M. (1997). Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiology Letters, 18, 299–306.

    Article  Google Scholar 

  50. Martienssen, M., Reichel, M., & Kohlweyer, U. (2001). Surface properties of bacteria from different wastewater treatment plants. Acta Biotechnologica, 21, 207–225.

    Article  CAS  Google Scholar 

  51. Wilen, B. M., Onuki, M., Hermansson, M., Lumle, D., & Mino, T. (2007). Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Research, 42, 2300–2308.

    Article  CAS  Google Scholar 

  52. Zhang, Z. J., Wu, W. W., & Wang, J. L. (2010). Granulation of completely autotrophic nitrifying sludge in sequencing batch reactor. Huanjing Kexue, 31, 140–146.

    CAS  Google Scholar 

  53. Adav, S. S., Lee, D. J., & Lai, J. Y. (2008). Intergenetic coaggregation of strains isolated from phenol-degrading aerobic granules. Applied Microbiology and Biotechnology, 79, 65–661.

    Article  CAS  Google Scholar 

  54. Jiang, H. L., Tay, S. T. L., Maszenan, A. M., & Tay, J. H. (2006). Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiology Ecology, 57, 182–191.

    Article  CAS  Google Scholar 

  55. Yang, S. F., Li, X. Y., & Yu, H. Q. (2008). Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochemistry, 43, 8–14.

    Article  CAS  Google Scholar 

  56. Tay, J. H., Pan, S., He, Y. X., & Tay, S. T. L. (2004). Effect of organic loading rate on aerobic granulation: Part II. Characteristics of aerobic granules. Journal of Environment and Engineering, 130, 1102–1109.

    Article  CAS  Google Scholar 

  57. Jiang, H. L., Tay, J. H., & Tay, S. T. L. (2002). Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Letters in Applied Microbiology, 35, 439–445.

    Article  Google Scholar 

  58. Zheng, Y. M., Yu, H. Q., & Sheng, G. P. (2005). Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochemistry, 40, 645–650.

    Article  CAS  Google Scholar 

  59. Tay, J. H., Yang, S. F., & Liu, Y. (2002). Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology and Biotechnology, 59, 332–337.

    Article  CAS  Google Scholar 

  60. Arrojo, B., Mosquera-Corral, A., Garrido, J. M., & Mendez, R. (2004). Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 38, 3389–3399.

    Article  CAS  Google Scholar 

  61. de Bruin, L. M. M., de Kreuk, M. K., van der Roest, H. F. R., Uijterlinde, C., & van Loosdrecht, M. C. M. (2004). Aerobic granular sludge technology: alternative for activated sludge. Water Science and Technology, 49, 1–7.

    Google Scholar 

  62. Schwarzenbeck, N., Borges, J. M., & Wilderer, P. A. (2005). Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Applied Microbiology and Biotechnology, 66, 711–718.

    Article  CAS  Google Scholar 

  63. Su, K. Z., & Yu, H. Q. (2005). Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environmental Science and Technology, 39, 2818–2828.

    Article  CAS  Google Scholar 

  64. Wang, S. G., Liu, X. W., Gong, W. X., Gao, B. Y., Zhan, D. H., & Yu, H. Q. (2007). Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technology, 98, 2142–2147.

    Article  CAS  Google Scholar 

  65. Wang, D. Z., & Zhou, L. X. (2010). Cultivation of aerobic granular sludge and characterization of nitrobenzene-degrading. Huanjing Kexue, 31, 147–152.

    Google Scholar 

  66. Xiang, Z. X., Zhang, L. L., & Chen, J. M. (2009). Aniline removal by aerobic granules and high-efficiency aniline-degrading bacteria. Huanjing Kexue, 30, 3336–3341.

    CAS  Google Scholar 

  67. Tay, J. H., Liu, Q. S., & Liu, Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, 57, 227–233.

    Article  CAS  Google Scholar 

  68. Hulshoff Pol, L. W., Heijnekamp, K., & Lettinga, G. (1988). The selection pressure as a driving force behind the granulation of anaerobic sludge. In G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, & L. W. Hulshoff Pol (Eds.), Granular anaerobic sludge: Microbiology and technology (pp. 153–161). Wageningen: Kluwer.

    Google Scholar 

  69. Kim, I. S., Kim, S. M., & Jang, A. (2008). Characterization of aerobic granules by microbial density at different COD loading rates. Bioresource Technology, 99, 18–25.

    Article  CAS  Google Scholar 

  70. Wang, S. G., Gai, L. H., Zhao, L. J., Fan, M. H., Gong, W. X., Gao, B. Y., & Ma, Y. (2009). Aerobic granules for low-strength wastewater treatment: formation, structure, and microbial community. Chemical Technology & Biotechnology, 84, 1015–1020.

    Article  CAS  Google Scholar 

  71. Liu, Y. Q., Moy, B., Kong, Y. H., & Tay, J. H. (2010). Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme and Microbial Technology, 46, 520–525.

    Article  CAS  Google Scholar 

  72. Lopez, A., Dosta, J., & Mata-Alvarez, J. (2009). Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater. Water Science and Technology, 60, 1049–1054.

    Article  CAS  Google Scholar 

  73. Liu, Y. Q., Wu, W. W., Tay, J. H., & Wang, J. L. (2007). Starvation is not a prerequisite for the formation of aerobic granules. Applied Microbiology and Biotechnology, 76, 211–216.

    Article  CAS  Google Scholar 

  74. McSwain, B. S., Irvine, R. L., & Wilderer, P. A. (2004). The influence of settling time on the formation of aerobic granules. Water Science and Technology, 50, 195–202.

    CAS  Google Scholar 

  75. Hu, L., Wang, J., Wen, X., & Qian, Y. (2005). The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules. Process Biochemistry, 40, 5–11.

    Article  CAS  Google Scholar 

  76. Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Aerobic granulation in sequencing batch reactors at different settling times. Bioresource Technology, 100, 5359–5361.

    Article  CAS  Google Scholar 

  77. Bossier, P., & Verstraete, W. (1996). Triggers for microbial aggregation in activated sludge? Applied Microbiology and Biotechnology, l45, 1–6.

    Article  Google Scholar 

  78. Castellanos, T., Ascencio, F., & Bashan, Y. (2000). Starvation-induced changes in the cell surface of Azospirillum lipoferum. FEMS Microbiology Ecology, 33, 1–9.

    Article  CAS  Google Scholar 

  79. Liu, Y. Q., & Tay, J. H. (2008). Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresource Technology, 99, 980–985.

    Article  CAS  Google Scholar 

  80. Wang, F., Yang, F., Zhang, X. W., Liu, Y., Zhang, H., & Zhou, J. (2005). Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors. World Journal of Microbiology and Biotechnology, 21, 1379–1384.

    Article  CAS  Google Scholar 

  81. Li, A. J., Zhang, T., & Li, X. Y. (2010). Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions. Chemosphere, 78, 500–509.

    Article  CAS  Google Scholar 

  82. Qin, L., Tay, J. H., & Liu, Y. (2004). Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 39, 579–584.

    Article  CAS  Google Scholar 

  83. de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90, 761–769.

    Article  CAS  Google Scholar 

  84. Williams, J. C., & Reyes, F. L. (2006). Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Science and Technology, 54, 139–146.

    Article  CAS  Google Scholar 

  85. de Kreuk, M. K., McSwain, B. S., Bathe, S., Tay, S. T. L., Schwarzenbeck, & Wilderer, P. A. (2005). Discussion outcomes. Ede. In: Aerobic granular sludge. Water and Environmental Management Series. IWA Publishing, Munich 165–169.

  86. Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007). Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure. Applied Microbiology and Biotechnology, 75, 685–691.

    Article  CAS  Google Scholar 

  87. Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007). Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Research, 41, 884–892.

    Article  CAS  Google Scholar 

  88. Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Functional consortium from aerobic granules under high organic loading rates. Bioresource Technology, 100, 3465–3470.

    Article  CAS  Google Scholar 

  89. Adav, S. S., Lee, D. J., & Lai, J. Y. (2010). Potential cause of aerobic granular sludge breakdown at high organic loading rates. Applied Microbiology and Biotechnology, 85, 1601–1610.

    Article  CAS  Google Scholar 

  90. Lemaire, R., Webb, R. I., & Yuan, Z. G. (2008). Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME, 2, 528–541.

    Article  CAS  Google Scholar 

  91. Ng, P. H. (2002). Storage stability of aerobic granules cultivated in aerobic granular sludge blanket reactor. Final year report of Bachelor of Engineering 2002. Singapore, Nanyang Technological University

  92. Wang, X. H., Zhang, H. M., Yang, F. L., Wang, Y. F., & Gao, M. M. (2008). Long-term storage and subsequent reactivation of aerobic granules. Bioresource Technology, 99, 8304–8309.

    Article  CAS  Google Scholar 

  93. Zhu, J. (2004). Reply to comment by J. Zhu. Water Research, 38, 3467–3469.

    Article  CAS  Google Scholar 

  94. Schmidt, J. E., & Ahring, B. K. (1994). Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Applied Microbiology and Biotechnology, 42, 457–462.

    CAS  Google Scholar 

  95. Zhang, L. L., Feng, X. X., Zhu, N. W., & Chen, J. M. (2007). Role of extracellular protein in the formation and stability of aerobic granules. Enzyme and Microbial Technology, 41, 551–557.

    Article  CAS  Google Scholar 

  96. Adav, S. S., Lee, D. J., & Tay, J. H. (2008). Extracellular polymeric substances and structural stability of aerobic granules. Water Research, 42, 1644–1650.

    Article  CAS  Google Scholar 

  97. Seviour, T., Pijuan, M., Nicholson, T., Keller, J., & Yuan, Z. G. (2010). Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Research, 43, 4469–4478.

    Article  CAS  Google Scholar 

  98. Li, X. F., Li, Y. J., Liu, H., Hua, Z. Z., Du, G. C., & Chen, J. (2008). Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor. Separation and Purification Technology, 59, 26–33.

    Article  CAS  Google Scholar 

  99. McSwain, B. S., Irvine, R. L., & Wilderer, P. A. (2004). The effect of intermittent feeding on aerobic granule structure. Water Science and Technology, 49, 19–25.

    CAS  Google Scholar 

  100. Sturm, B. S., & Irvine, R. L. (2008). Dissolved oxygen as a key parameter to aerobic granule formation. Water Science and Technology, 58, 781–787.

    Article  CAS  Google Scholar 

  101. Mosquera-Corral, A., de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 39, 2676–2686.

    Article  CAS  Google Scholar 

  102. Wan, J., & Sperandio, M. (2009). Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor. Chemosphere, 75, 220–227.

    Article  CAS  Google Scholar 

  103. Dulekgurgen, E., Artan, N., Orhon, D., & Wilderer, P. A. (2008). How does shear affect aggregation in granular sludge sequencing batch reactors? Relations between shear, hydrophobicity, and extracellular polymeric substances. Water Science and Technology, 58, 267–276.

    Article  CAS  Google Scholar 

  104. Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Proteolytic activity in stored aerobic granular sludge and structural integrity. Bioresource Technology, 100, 68–73.

    Article  CAS  Google Scholar 

  105. de Kreuk, M. K., & van Loosdrecht, M. C. M. (2004). Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology, 49, 9–17.

    Google Scholar 

  106. Wana, J. F., Bessiere, Y., & Sperandio, M. (2009). Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift rector at reduced aeration rate. Water Research, 43, 5097–5108.

    Article  CAS  Google Scholar 

  107. Mahoney, E. M., Varangu, L. K., Cairns, W. L., Kosaric, N., & Murray, R. G. E. (1987). The effect of calcium on microbial aggregation during UASB reactor start-up. Water Science and Technology, 19, 249–260.

    CAS  Google Scholar 

  108. Jiang, H. L., Tay, J. H., Liu, Y., & Tay, S. T. L. (2003). Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnology Letters, 25, 95–99.

    Article  CAS  Google Scholar 

  109. Lin, Y. M., Wang, L., Chi, Z. M., & Liu, X. Y. (2008). Bacterial alginate role in aerobic granular bio-particles formation and settleability improvement. Separation Science and Technology, 43, 1642–1652.

    Article  CAS  Google Scholar 

  110. Li, X. M., Liu, Q. Q., Yang, Q., Guo, L., Zeng, G. M., Hu, J. M., & Zheng, W. (2009). Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresource Technology, 100, 64–67.

    Article  CAS  Google Scholar 

  111. Yang, S. F., Tay, J. H., & Liu, Y. (2004). Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering, 17, 41–48.

    Article  CAS  Google Scholar 

  112. Shi, X. Y., Sheng, G. P., Li, X. Y., & Yu, H. Q. (2010). Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresource Technology, 101, 2960–2964.

    Article  CAS  Google Scholar 

  113. Ren, T. T., Liu, L., Sheng, G. P., Li, X. W., Yu, H. Q., & Zhang, M. C. (2008). Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Research, 42, 3343–3352.

    Article  CAS  Google Scholar 

  114. Liu, X. W., Sheng, G. P., & Yu, H. Q. (2009). Physicochemical characteristics of microbial granules. Biotechnology Advances, 27, 1061–1070.

    Article  CAS  Google Scholar 

  115. Juang, Y. C., Adav, S. S., & Lee, D. J. (2010). Stable aerobic granules for continuous-flow reactors: precipitating calcium and iron salts in granular interiors. Bioresource Technology, 101, 8051–8057.

    Article  CAS  Google Scholar 

  116. Ni, B. J., & Yu, H. Q. (2008). Storage and growth of denitrifiers in aerobic granules. Part I. Model development. Biotechnology and Bioengineering, 99, 314–323.

    Article  CAS  Google Scholar 

  117. Ni, B. J., Yu, H. Q., & Xie, W. M. (2008). Storage and growth of denitrifiers in aerobic granules. Part II. Model calibration and verification. Biotechnology and Bioengineering, 99, 324–332.

    Article  CAS  Google Scholar 

  118. Ni, B. J., Yu, H. Q., & Sun, Y. J. (2008). Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Research, 42, 1583–1594.

    Article  CAS  Google Scholar 

  119. Juang, Y. J., Su, A., Fang, L. H., Lee, D. J., & Lai, J. Y. (2011). Fouling with aerobic granule membrane bioreactor. Water Science and Technology, 64(9), 1870–1875.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from Project NSFC No. 51176037 and the supports from the National Science Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duu-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Show, KY., Lee, DJ. & Tay, JH. Aerobic Granulation: Advances and Challenges. Appl Biochem Biotechnol 167, 1622–1640 (2012). https://doi.org/10.1007/s12010-012-9609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9609-8

Keywords