Skip to main content

Advertisement

Log in

Biological N Removal from Wastes Generated from Amine-Based CO2 Capture: Case Monoethanolamine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Large-scale amine-based CO2 capture will generate waste containing large amounts of ammonia, in addition to contaminants such as the actual amine as well as degradation products thereof. Monoethanolamine (MEA) has been a dominant amine applied so far in this context. This study reveals how biological N removal can be achieved even in systems heavily contaminated by MEA in post- as well as pre-denitrification treatment systems, elucidating the rate-limiting factors of nitrification as well as aerobic and denitrifying biodegradation of MEA. The hydrolysis of MEA to ammonia readily occurred both in post- and pre-denitrification treatment systems with a hydraulic retention time of 7 h. MEA removal was ≥99 ± 1 % and total nitrogen removal 77 ± 10 % in both treatment systems. This study clearly demonstrates the advantage of pre-denitrification over post-denitrification for achieving biological nitrogen removal from MEA-contaminated effluents. Besides the removal of MEA, the removal efficiency of total nitrogen as well as organic matter was high without additional carbon source supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reynolds, A. J., Verheyen, T. V., Adeloju, S. B., Meuleman, E., & Feron, P. (2012). Environmental Science and Technology, 46, 3643–3654.

    Article  CAS  Google Scholar 

  2. Strazisar, B. R., Anderson, R. R., & White, C. M. (2003). Energy & Fuels, 17, 1034–1039.

    Article  CAS  Google Scholar 

  3. Goff, G. S., & Rochelle, G. T. (2004). Industrial and Engineering Chemistry Research, 43, 6400–6408.

    Article  CAS  Google Scholar 

  4. Botheju, D., Li, Y., Hovland, J., Haugen, H. A., & Bakke, R. (2011). Energy Procedia, 4, 496–503.

    Article  CAS  Google Scholar 

  5. Lai, B., & Shieh, W. K. (1996). Water Research, 30, 2530–2534.

    Article  CAS  Google Scholar 

  6. Ohtaguchi, K., Koide, K., & Yokoyama, T. (1995). Energy Convers. Manage, 36, 401–404.

    CAS  Google Scholar 

  7. Ohtaguchi, K., & Yokoyama, T. (1997). Energy Convers. Manage, 38, S539–S544.

    CAS  Google Scholar 

  8. Hauser, I., Einbu, A., Ostgaard, K., Svendsen, H. F., & Cervantes, F. J. (2012). Biotechnol. Lett., 1–6.

  9. Liberackl, A. B., Neeper-Bradley, T. L., Breslin, W. J., & Zielke, G. J. (1996). Toxicological Sciences, 31, 117–123.

    Article  Google Scholar 

  10. Ndegwa, A. W., Wong, R. C. K., Chu, A., Bentley, L. R., & Lunn, S. R. D. (2004). Journal of Environmental Engineering and Science, 3, 137–145.

    Article  CAS  Google Scholar 

  11. Bakalova, S., Mincheva, V., Doycheva, A., Groudeva, V., & Dimkov, R. (2008). Biotechnology and Biotechnological Equipment, 22, 716–720.

    CAS  Google Scholar 

  12. Kim, D. J., Lim, Y., Cho, D., & Rhee, I. (2010). Korean J. Chemical Engineer, 27, 1521–1526.

    CAS  Google Scholar 

  13. Mrklas, O., Chu, A., Lunn, S., & Bentley, L. R. (2004). Water, Air, Soil Pollution, 159, 249–263.

    Article  CAS  Google Scholar 

  14. Eide-Haugmo, I., Brakstad, O. G., Hoff, K. A., Sørheim, K. R., da Silva, E. F., & Svendsen, H. F. (2009). Energy Procedia, 1, 1297–1304.

    Article  CAS  Google Scholar 

  15. Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q., & Wang, S. (2008). In reviews of environmental contamination and toxicology. In D. Whitacre (Ed.), Biological Removal of Nitrogen from Wastewater (Vol. 192, pp. 159–195). New York: Springer.

    Google Scholar 

  16. Read, M. L., Etrych, T., Ulbrich, K., & Seymour, L. W. (1999). FEBS Letters, 461, 96–100.

    Article  CAS  Google Scholar 

  17. Tiedje, J. M., Sexstone, A. J., Myrold, D. D., & Robinson, J. A. (1983). Antonie Van Leeuwenhoek, 48, 569–583.

    Article  Google Scholar 

  18. Bernet, N., Delgenes, N., & Moletta, R. (1996). Environmental Technology, 17, 293–300.

    Article  CAS  Google Scholar 

  19. Cervantes, F. J., De la Rosa, D. A., & Gómez, J. (2001). Bioresource Technology, 79, 165–170.

    Article  CAS  Google Scholar 

  20. Kaplan, B. H., & Stadtman, E. R. (1968). Journal of Biological Chemistry, 243, 1787–1793.

    CAS  Google Scholar 

  21. Abend, A., Bandarian, V., Nitsche, R., Stupperich, E., Rétey, J., & Reed, G. H. (1999). Archives of Biochemistry and Biophysics, 370, 138–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Hauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, I., Colaço, A.B., Skjæran, J.A. et al. Biological N Removal from Wastes Generated from Amine-Based CO2 Capture: Case Monoethanolamine. Appl Biochem Biotechnol 169, 1449–1458 (2013). https://doi.org/10.1007/s12010-012-0075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0075-0

Keywords

Navigation