Skip to main content
Log in

New Ether-Functionalized Ionic Liquids for Lipase-Catalyzed Synthesis of Biodiesel

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696–705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol® oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 °C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Most imidazolium ILs are based on anions of BF 4 , OTf, MeSO 4 , Tf2N, PF 6 , and SbF 6 . Poor yields were seen in most hydrophobic ILs except in [OMIM][Tf2N].

  2. One unit hydrolyzes 1.0 microequivalent of fatty acid from triacetin in 1 h at pH 7.4 at 37 °C.

  3. One unit is the amount of immobilized enzyme which forms 1% octyl laurate (GC, area percent) from 0.5 mmol lauric acid and 1.0 mmol 1-octanol in 10 mL water-saturated isooctane in 1 h at 20 °C.

  4. One unit corresponds to the amount of enzyme which liberates 1 μmol oleic acid from triolein per minute at pH 7.5 and 37 °C.

References

  1. Fukuda, H., Kondo, A., & Noda, H. (2001). Journal of Bioscience and Bioengineering, 92, 405–416.

    Article  CAS  Google Scholar 

  2. Liu, B., & Zhao, Z. (2007). Journal of Chemical Technology and Biotechnology, 82, 775–780.

    Article  CAS  Google Scholar 

  3. Du, W., Wang, L., & Liu, D. (2007). Green Chemistry, 9, 173–176.

    Article  CAS  Google Scholar 

  4. Wang, W. G., Lyons, D. W., Clark, N. N., & Gautam, M. (2000). Environmental Science and Technology, 34, 933–939.

    Article  CAS  Google Scholar 

  5. Schuchardt, U., Sercheli, R., & Vargas, R. M. (1998). Journal of the Brazilian Chemical Society, 9, 199–210.

    Article  CAS  Google Scholar 

  6. Formo, M. W. (1954). Journal of the American Oil Chemists’ Society, 31, 548–559.

    Article  CAS  Google Scholar 

  7. Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Journal of the American Oil Chemists’ Society, 61, 1638–1643.

    Article  CAS  Google Scholar 

  8. Vicente, G., Martínez, M., & Aracil, J. (2004). Bioresource Technology, 92, 297–305.

    Article  CAS  Google Scholar 

  9. Liu, Y., Lotero, E., Goodwin, J. G., & Lu, C. (2007). Journal of Catalysis, 246, 428–433.

    Article  CAS  Google Scholar 

  10. Chai, F., Cao, F., Zhai, F., Chen, Y., Wang, X., & Su, Z. (2007). Advanced Synthesis & Catalysis, 349, 1057–1065.

    Article  CAS  Google Scholar 

  11. Abreu, F. R., Alves, M. B., Macêdo, C. C. S., Zara, L. F., & Suarez, P. A. Z. (2005). Journal of Molecular Catalysis. A, Chemical, 227, 263–267.

    Article  CAS  Google Scholar 

  12. Abreu, F. R., Lima, D. G., Hamú, E. H., Einloft, S., Rubim, J. C., & Suarez, P. A. Z. (2003). Journal of the American Oil Chemists’ Society, 80, 601–604.

    Article  CAS  Google Scholar 

  13. Toda, M., Takagaki, A., Okamura, M., Kondo, J. N., Hayashi, S., Domen, K., et al. (2005). Nature, 438, 178.

    Article  CAS  Google Scholar 

  14. DaSilveira Neto, B. A., Alves, M. B., Lapis, A. A. M., Nachtigall, F. M., Eberlin, M. N., Dupont, J., et al. (2007). Journal of Catalysis, 249, 154–161.

    Article  CAS  Google Scholar 

  15. Lapis, A. A. M., de Oliveira, L. F., Neto, B. A. D., & Dupont, J. (2008). ChemSusChem, 1, 759–762.

    Article  CAS  Google Scholar 

  16. Demirbas, A. (2005). Progress in Energy and Combustion Science, 31, 466–487.

    Article  CAS  Google Scholar 

  17. Saka, S., & Kusdiana, D. (2001). Fuel, 80, 225–231.

    Article  CAS  Google Scholar 

  18. Kusdiana, D., & Saka, S. (2001). Fuel, 80, 693–698.

    Article  CAS  Google Scholar 

  19. He, H., Wang, T., & Zhu, S. (2007). Fuel, 86, 442–447.

    Article  CAS  Google Scholar 

  20. Wu, Q., Chen, H., Han, M., Wang, D., & Wang, J. (2007). Industrial & Engineering Chemistry Research, 46, 7955–7960.

    Article  CAS  Google Scholar 

  21. Han, M., Yi, W., Wu, Q., Liu, Y., Hong, Y., & Wang, D. (2009). Bioresource Technology, 100, 2308–2310.

    Article  CAS  Google Scholar 

  22. Liang, X., Gong, G., Wu, H., & Yang, J. (2009). Fuel, 88, 613–616.

    Article  CAS  Google Scholar 

  23. Akoh, C. C., Chang, S. W., Lee, G.-C., & Shaw, J.-F. (2007). Journal of Agricultural and Food Chemistry, 55, 8995–9005.

    Article  CAS  Google Scholar 

  24. Zhao, X., El-Zahab, B., Brosnahan, R., Perry, J., & Wang, P. (2007). Applied Biochemistry and Biotechnology, 143, 236–243.

    Article  CAS  Google Scholar 

  25. Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H., et al. (1999). Journal of the American Oil Chemists’ Society, 76, 789–793.

    Article  CAS  Google Scholar 

  26. Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Journal of Molecular Catalysis. B, Enzymatic, 30, 125–129.

    Article  CAS  Google Scholar 

  27. Modi, M. K., Reddy, J. R. C., Rao, B. V. S. K., & Prasad, R. B. N. (2007). Bioresource Technology, 98, 1260–1264.

    Article  CAS  Google Scholar 

  28. Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S. (2001). Journal of Molecular Catalysis. B, Enzymatic, 16, 53–58.

    Article  CAS  Google Scholar 

  29. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Bioresource Technology, 98, 648–653.

    Article  CAS  Google Scholar 

  30. van Rantwijk, F., & Sheldon, R. A. (2007). Chemical Reviews, 107, 2757–2785.

    Article  Google Scholar 

  31. Ha, S. H., Lan, M. N., Lee, S. H., Hwang, S. M., & Koo, Y.-M. (2007). Enzyme and Microbial Technology, 41, 480–483.

    Article  CAS  Google Scholar 

  32. Sunitha, S., Kanjilal, S., Reddy, P. S., & Prasad, R. B. N. (2007). Biotechnology Letters, 29, 1881–1885.

    Article  CAS  Google Scholar 

  33. Gamba, M., Lapis, A. A. M., & Dupont, J. (2008). Advanced Synthesis & Catalysis, 350, 160–164.

    Article  CAS  Google Scholar 

  34. Lau, R. M., Sorgedrager, M. J., Carrea, G., van Rantwijk, F., Secundo, F., & Sheldon, R. A. (2004). Green Chemistry, 6, 483–487.

    Article  Google Scholar 

  35. Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., & Peters, D. (2008). Green Chemistry, 10, 696–705.

    Article  CAS  Google Scholar 

  36. Turner, M. B., Spear, S. K., Huddleston, J. G., Holbrey, J. D., & Rogers, R. D. (2003). Green Chemistry, 5, 443–447.

    Article  CAS  Google Scholar 

  37. Toral, A. R., de los Rios, A. P., Hernández, F. J., Janssen, M. H. A., Schoevaart, R., van Rantwijk, F., et al. (2007). Enzyme and Microbial Technology, 40, 1095–1099.

    Article  CAS  Google Scholar 

  38. de los Ríos, A. P., Hernández-Fernández, F. J., Martínez, F. A., Rubio, M., & Víllora, G. (2007). Biocatalysis and Biotransformation, 25, 151–156.

    Article  Google Scholar 

  39. Moniruzzaman, M., Kamiya, N., & Goto, M. (2009). Langmuir, 25, 977–982.

    Article  CAS  Google Scholar 

  40. Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Zanders, L., & Campbell, S. M. (2009). Journal of Molecular Catalysis. B, Enzymatic, 57, 149–157.

    Article  CAS  Google Scholar 

  41. Zhao, H., Jones, C. L., & Cowins, J. V. (2009). Green Chemistry, 11, 1128–1138. doi:10.1039/b905388c.

  42. MacFarlane, D. R., Pringle, J. M., Johansson, K. M., Forsyth, S. A., & Forsyth, M. (2006). Chemical Communications, 1905–1917.

  43. Liu, Q., Janssen, M. H. A., van Rantwijk, F., & Sheldon, R. A. (2005). Green Chemistry, 7, 39–42.

    Article  CAS  Google Scholar 

  44. Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., & Tominaga, Y. (2000). Journal of the American Oil Chemists’ Society, 77, 355–360.

    Article  CAS  Google Scholar 

  45. Soumanou, M. M., & Bornscheuer, U. T. (2003). Enzyme and Microbial Technology, 33, 97–103.

    Article  CAS  Google Scholar 

  46. Köse, Ö., Tüter, M., & Aksoy, H. A. (2002). Bioresource Technology, 83, 125–129.

    Article  Google Scholar 

  47. Yang, J.-S., Jeon, G.-J., Hur, B.-K., & Yang, J.-W. (2005). Journal of Microbiology and Biotechnology, 15, 1183–1188.

    CAS  Google Scholar 

  48. Babayan, V. K. (1981). Journal of the American Oil Chemists’ Society, 58, 49A–51A.

    Article  CAS  Google Scholar 

  49. Flores, M. V., Naraghi, K., Engasser, J.-M., & Halling, P. J. (2002). Biotechnology and Bioengineering, 78, 815–821.

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (46776-GB1) for partial support of this research. The valuable and stimulating discussion with Dr. Jonathan H. Melman is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Song, Z., Olubajo, O. et al. New Ether-Functionalized Ionic Liquids for Lipase-Catalyzed Synthesis of Biodiesel. Appl Biochem Biotechnol 162, 13–23 (2010). https://doi.org/10.1007/s12010-009-8717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8717-6

Keywords

Navigation