Skip to main content
Log in

Use of a Bacterially Expressed Human Factor IX Light Chain to Develop Polyclonal Antibody Anti-hFIX

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2009

Abstract

Hemophilia B is an X-linked recessive bleeding disorder caused by deficiency or malfunctioning of human coagulation factor IX (hFIX). Hemophilia B patients are treated at present by infusion of plasma derived hFIX which is not always efficient, because development of anti-hFIX antibodies (alloantibodies) in some cases inhibits the activity of the infused hFIX. The hFIX alloantibodies are directed against γ-carboxyglutamic acid residues (Gla-domain) or protease domain in hFIX light chain. An epitope-containing fragment of hFIX light-chain was expressed in a T7-based Escherichia coli expression system and after purification, it was used for the immunization of rabbit to develop specific antibodies anti-hFIX. The plasma, derived from the immunized rabbit, was shown to be able to detect the normal hFIX, which indicates for the presence of a specific anti-hFIX antibody and supporting that a bacterially expressed hFIX subfragment might be able to neutralize the alloantibodies. Considering the importance of hFIX and its related investigations, both the produced hFIX antigen and its corresponding antibody will play important roles for experiments dealing with the production of hFIX and studies involved in the neutralization of the hFIX inhibitors in hFIX-related disorders and other clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin, S. W., Dunn, J. J., Studier, F. W., & Stafford, D. W. (1987). Biochemistry, 26, 5267–5274. doi:10.1021/bi00391a009.

    Article  CAS  Google Scholar 

  2. Takahashi, I., Yako, F., Saito, H., & Kamiya, T. (1998). Peptides, 19, 1129–1136. doi:10.1016/S0196-9781(98)00064-3.

    Article  CAS  Google Scholar 

  3. Jackson, C. M., & Nemerson, Y. (1980). Biochemist, 209, 837–846.

    Google Scholar 

  4. van den Brink, E. N., Turenhout, E. A. M., Bank, C. M. C., Fijnvandraat, K., Peters, M., & Voorberg, J. (2000). Blood, 96(2), 540–545.

    Google Scholar 

  5. Lindquist, P. A., Fujikawa, K., & Davie, E. W. (1978). The Journal of Biological Chemistry, 253, 1902–1909.

    CAS  Google Scholar 

  6. DiScipio, R. G., Kurachi, K., & Davie, E. W. (1978). Proceedings of the National Academy of Sciences of the United States of America, 61, 1528–1538.

    CAS  Google Scholar 

  7. Olivier, D., Christophe, P. J., Lenting, G. C., Mariette, B., Lavergne, J., Boertjes, R., et al. (2001). Blood, 98, 1416–1423. doi:10.1182/blood.V98.5.1416.

    Article  Google Scholar 

  8. Katayama, K., Ericsson, L. H., Enfield, D. L., Walsh, K. A., Neurath, H., & Davie, E. W. (1979). Proceedings of the National Academy of Sciences of the United States of America, 76, 4990–4994. doi:10.1073/pnas.76.10.4990.

    Article  CAS  Google Scholar 

  9. Furie, B., Bing, D. H., Feldmann, R. J., Robison, D. J., Burnier, J. P., & Furie, B. C. (1982). The Journal of Biological Chemistry, 257, 3875–3882.

    CAS  Google Scholar 

  10. Giannelli, F., Green, P. M., Sommer, S. S., Poon, M. C., Ludwig, M., Schwaab, R., et al. (1998). Nucleic Acids Research, 26, 265–268. doi:10.1093/nar/26.1.265.

    Article  CAS  Google Scholar 

  11. White, S. J., Page, S. M., Margaritis, P., & Brownlee, G. G. (1998). Human Gene Therapy, 9, 1187–1195. doi:10.1089/hum.1998.9.8-1187.

    Article  CAS  Google Scholar 

  12. Fricke, W. A., & Lamb, M. A. (1993). Seminars in Thrombosis and Hemostasis, 19, 54–61. doi:10.1055/s-2007-994006.

    Article  CAS  Google Scholar 

  13. Charlebois, T. S., O’connell, B. D., Adamson, S. R., Brink-Nilsson, H., Jernberg, M., Eriksson, B., et al. (2001). Seminars in Hematology, 38, 32–39. doi:10.1016/S0037-1963(01)90106-4.

    Article  CAS  Google Scholar 

  14. Greenhalgh, D. A., Rothnagel, J. A., & Roop, D. R. (1994). The Journal of Investigative Dermatology, 103, 63S–68S. doi:10.1111/1523-1747.ep12399070.

    Article  CAS  Google Scholar 

  15. Gerrard, A. J., Hudson, D. L., Brownlee, G. G., & Watt, F. M. (1993). Nature Genetics, 3(2), 180–183. doi:10.1038/ng0293-180.

    Article  CAS  Google Scholar 

  16. Page, S. M., & Brownlee, G. G. (1998). Gene Therapy, 5, 394–402. doi:10.1038/sj.gt.3300591.

    Article  CAS  Google Scholar 

  17. Sugihara, T. M., Kudryavtseva, E. I., Kumar, V., Horridge, J. J., & Andersen, B. (2001). The Journal of Biological Chemistry, 276, 33036–33044. doi:10.1074/jbc.M103000200.

    Article  CAS  Google Scholar 

  18. Kaufman, C. K., Sinha, S., Bolotin, D., Fan, J., & Fuchs, E. (2002). Molecular and Cellular Biology, 22(12), 293–308. doi:10.1128/MCB.22.12.4293-4308.2002.

    Article  Google Scholar 

  19. Aneskievich, B. J., Letai, A. G., & Fuchs, E. (1995). Somatic gene therapy. In Chang P. L. (Ed.). Baca Raton, FL: CRC; pp. 73–90.

  20. Hosseini, S. J., Zomorodipour, A., Jalal, R., & Sabooni, F. (2006). Blood (khoon), 4(1), 17–27.

    Google Scholar 

  21. Lozier, J. N., Tayebi, N., & Zhang, P. (2005). Blood, 105, 1029–1035. doi:10.1182/blood-2004-03-1126.

    Article  CAS  Google Scholar 

  22. Mingozzi, F., Liu, Y., Dobrzynski, E., Kaufhold, A., & Liu, J. H. (2003). The Journal of Clinical Investigation, 111, 1347–135.

    CAS  Google Scholar 

  23. Scandella, D., Mahoney, S. D., Mattingly, M., Roeder, D., Timmons, L., & Fulcher, C. A. (1988). Proceedings of the National Academy of Sciences of the United States of America, 85, 6152–6156. doi:10.1073/pnas.85.16.6152.

    Article  CAS  Google Scholar 

  24. Smbrook, J., & Russell, D. W. (2001). Molecular cloning—a laboratory manual, cold spring. New York: Harbor Laboratory.

    Google Scholar 

  25. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 55, 3389–3405. doi:10.1093/nar/25.17.3389.

    Article  Google Scholar 

  26. Libby, R., Braedt, G., Kronheyim, S., March, C. J., Urdal, D. L., Chiaverotti, T. A., et al. (1987). DNA (Mary Ann Liebert, Inc.), 6, 221–229.

    CAS  Google Scholar 

  27. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  28. Bradford, M. M. (1976). The Journal of Biological Chemistry, 72, 248–254.

    CAS  Google Scholar 

  29. Lim, H. K., Jung, K. H., Park, D. H., & Ching, S. I. (2000). Applied Microbiology and Biotechnology, 53, 201–208. doi:10.1007/s002530050009.

    Article  CAS  Google Scholar 

  30. Kiany, J., Zomorodipour, A., Ahmadzadeh Raji, M., & Sanati, M. H. (2003). Journal of Sciences, Islamic Republic of Iran, 14, 311–316.

    CAS  Google Scholar 

  31. Ghasemi, F., Zomorodipour, A., Shojai, Sh., Ataei, F., Khodabandeh, M., & Sanati, M. H. (2004). Iranian Journal of Biotechnology, 2, 250–260.

    CAS  Google Scholar 

  32. Amiri Yekta, A., Zomorodipour, A., Khodabandeh, M., Daliri Chopari, M., & Kafilzadeh, F. (2006). Iranian Journal of Biotechnology, 4(2), 104–111.

    Google Scholar 

  33. Calvez, H. L., Green, J. M., & Baty, D. (1996). Gene, 170, 51–55. doi:10.1016/0378-1119(95)00850-0.

    Article  CAS  Google Scholar 

  34. Berges, H., Joseph-Liauzun, E., & Fayet, O. (1996). Applied and Environmental Microbiology, 62, 55–60.

    CAS  Google Scholar 

  35. Makrides, S. C. (1996). Microbiological Reviews, 60, 512–538.

    CAS  Google Scholar 

  36. Fulcher, C. A., Graaf Mahoney, S., Roberts, J. R., Kasper, C. K., & Zimmerman, T. S. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 7728–7732. doi:10.1073/pnas.82.22.7728.

    Article  CAS  Google Scholar 

  37. Toole, J. J., Knopf, J. L., Wozney, J. M., Sultzman, L. A., Buecker, J. L., & Pittman, D. D. (1984). Nature, 312, 312–342. doi:10.1038/312342a0.

    Article  Google Scholar 

  38. Scandella, D., Gilbert, G. E., Shima, M., Nakai, H., Eaglson, C., Flech, M., et al. (1995). Blood, 86, 1811–1819.

    CAS  Google Scholar 

  39. Chaves, D. G., Rodrigues, C. V., Ferreira, W. A., Siqueira, P. F. M., Duarte, C. G., de Freitas, A. B., et al. (2006). Brazilian Archives of Biology and Technology, 49(4), 605–609. doi:10.1590/S1516-89132006000500010.

    Article  CAS  Google Scholar 

  40. Takahashia, I., Kojimab, T., Sanoc, M., Watanabed, T., Kamiyaa, T., & Saitob, H. (2000). Peptides, 21, 603–608. doi:10.1016/S0196-9781(00)00204-7.

    Article  Google Scholar 

  41. Bowen, D. J. (2002). Molecular Pathology, 55, 1–18. doi:10.1136/mp.55.1.1.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Mr. Karkhane for valuable technical advices and to Mrs. Fariba Attaie for valuable suggestions on the paper. This work was also supported by a grant from the National Institute for Genetic Engineering and Biotechnology of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zomorodipour.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-009-8742-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safari, S., Zomorodipour, A., Amirmozaffari, N. et al. Use of a Bacterially Expressed Human Factor IX Light Chain to Develop Polyclonal Antibody Anti-hFIX. Appl Biochem Biotechnol 159, 404–414 (2009). https://doi.org/10.1007/s12010-008-8506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8506-7

Keywords

Navigation