Skip to main content
Log in

Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Association with nucleic acid has been recognized as a unique role of lysozyme and may explain why lysozyme was called a killer protein against HIV infection. In the present study, we characterized the interactions of lysozyme and its derived peptides with a biotin-labeled pUC19 plasmid DNA. Real-time detection of the macromolecular interaction was performed using the SPR (surface plasmon resonance) spectroscopy. The SPR sensorgrams were analyzed and the association and dissociation rate constants as well as the dissociation equilibrium constant K D were, thus, estimated. The results reveal that other than the electrostatic interactions between the basic protein and the nucleotide sequences carrying negative charges, the specific DNA-binding motifs at the N- and C-termini of lysozyme were also involved in the interactions. The nonapeptide RAWVAWRNR (aa 107–115 of lysozyme) reported previously to block HIV-1 viral entrance and replication was also able to bind DNA with its K D value comparable to that of histones. The possibilities of ligand-binding-induced conformational changes were investigated using the circular dichroism spectroscopy. The CD spectra (200–320 nm) reveal that the conformational changes indeed occur as the spectra of lysozyme–DNA interactions are much less at the major trough region than the sum of individual spectra. The interaction of lysozyme with DNA molecules may interfere with DNA replication, modulate gene expression, and block bacterial and viral infections. These all suggest that human lysozyme may represent part of the innate immune system with a very broad protective spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CD spectroscopy:

circular dichroism spectroscopy

HEW:

hen egg-white

SPR:

surface plasmon resonance

Reference

  1. Schindler, M., Assaf, Y., Sharon, N. D., & Chipman, M. (1977). Biochemistry, 16, 423–431. doi:10.1021/bi00622a013.

    Article  CAS  Google Scholar 

  2. Posse, E., DeArcuri, B. F., & Morero, R. D. (1994). Biochimica et Biophysica Acta, 1193, 101–106. doi:10.1016/0005-2736(94)90338-7.

    Article  CAS  Google Scholar 

  3. Siberstein, S., & Inouye, M. (1974). Biochimica et Biophysica Acta, 366, 149–158.

    Google Scholar 

  4. Sava, G., Ceschia, V., & Zabucchi, G. (1988). European Journal of Cancer & Clinical Oncology, 24, 1737–1743. doi:10.1016/0277-5379(88)90075-2.

    Article  CAS  Google Scholar 

  5. Lee-Huang, S., Huang, P. L., Sun, Y., Kung, H. F., Blithe, D. L., & Chen, H. C. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 2678–2781. doi:10.1073/pnas.96.6.2678.

    Article  CAS  Google Scholar 

  6. Steinrauf, L. K., Shiuan, D., Yang, W. J., & Chiang, M. Y. (1999). Biochemical and Biophysical Research Communications, 266, 366–370. doi:10.1006/bbrc.1999.1804.

    Article  CAS  Google Scholar 

  7. Jolles, P. (1996). EXS, 75, 3–5.

    CAS  Google Scholar 

  8. Dickerson, R. E., Reddy, J. M., Pinkerton, M., & Steinrauf, L. K. (1962). Nature, 196, 1178. doi:10.1038/1961178a0.

    Article  CAS  Google Scholar 

  9. Pellegrini, A., Thomas, U., von Fellenberg, R., & Wild, P. (1992). The Journal of Applied Bacteriology, 72, 180–187.

    CAS  Google Scholar 

  10. Ibrahim, H. R., Yamada, M., Kobayashi, K., & Kato, A. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 1361–1363.

    Article  CAS  Google Scholar 

  11. Pellegrini, A., Bramaz, T. N., Klauser, S., Hunziker, P., & von Fellenberg, R. (1997). Journal of Applied Microbiology, 82, 372–378. doi:10.1046/j.1365-2672.1997.00372.x.

    Article  CAS  Google Scholar 

  12. During, K., Porsch, P., Mahn, A., Brinkmann, O., & Gieffers, W. (1999). FEBS Letters, 449, 93–100. doi:10.1016/S0014-5793(99)00405-6.

    Article  CAS  Google Scholar 

  13. Ibrahim, H. R., Matsuzaki, T., & Aoki, T. (2001). FEBS Letters, 506, 27–32. doi:10.1016/S0014-5793(01)02872-1.

    Article  CAS  Google Scholar 

  14. Lee-Huang, S., Maiorov, V., Huang, P. L., Ng, A., Lee, H. C., Chang, Y. T., et al. (2005). Biochemistry, 44, 4648–4655. doi:10.1021/bi0477081.

    Article  CAS  Google Scholar 

  15. Wu, S. J., & Chailen, I. (2004). Methods in Molecular Biology (Clifton, N.J.), 249, 93–110.

    CAS  Google Scholar 

  16. Schubert, H., Zettl, W., Hafner, G., & Krausch, G. (2003). Biochemistry, 42, 10288–10294. doi:10.1021/bi034033d.

    Article  CAS  Google Scholar 

  17. Stenlund, P. G., Babcock, J., Sodroski, J., & Myszka, D. G. (2003). Analytical Biochemistry, 316, 243–250. doi:10.1016/S0003-2697(03)00046-0.

    Article  CAS  Google Scholar 

  18. Kobayashi, Y., Nakamura, H., Sekiguchi, T., Takanami, R., Murata, T., Usui, T., et al. (2005). Analytical Biochemistry, 336, 87–93. doi:10.1016/j.ab.2004.09.029.

    Article  CAS  Google Scholar 

  19. Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., et al. (2001). Nucleic Acids Research, 29, 2994–3005. doi:10.1093/nar/29.14.2994.

    Article  CAS  Google Scholar 

  20. Oohara, I., & Wada, A. (1987). Journal of Molecular Biology, 196, 389–397. doi:10.1016/0022-2836(87)90699-1.

    Article  CAS  Google Scholar 

  21. Singhal, R. P., & Otim, O. (2000). Biochemical and Biophysical Research Communications, 272, 251–258. doi:10.1006/bbrc.2000.2720.

    Article  CAS  Google Scholar 

  22. Henriksson-Peltola, P., Sehlen, W., & Haggard-Ljungquist, E. (2007). Nucleic Acids Research, 35, 3181–3191. doi:10.1093/nar/gkm172.

    Article  CAS  Google Scholar 

  23. Nejedly, K., Chladkova, J., Vorlickova, M., Hrabcova, I., & Kypr, J. (2005). Nucleic Acids Research, 33, e5. doi:10.1093/nar/gni008.

    Article  Google Scholar 

  24. Lindner, A. B., Eshhar, Z., & Tawfik, D. S. (1999). Journal of Molecular Biology, 285, 421–430. doi:10.1006/jmbi.1998.2309.

    Article  CAS  Google Scholar 

  25. Srisailam, S., Arunkumar, A. I., Wang, W., Yu, C., & Chen, H. M. (2000). Biochimica et Biophysica Acta, 1479, 275–285.

    CAS  Google Scholar 

  26. Ibrahim, H. R., Thomas, U., & Pellegrini, A. (2001). The Journal of Biological Chemistry, 47, 43767–43774. doi:10.1074/jbc.M106317200.

    Article  Google Scholar 

Download references

Acknowledgement

The present work was supported in part by the grants (NSC95-2113-M001-043 to LSK; NSC94-2311-B259-005 to DS) from National Science Council, ROC. The authors also thank Academia Sinica for providing the research supporting grant (Academia Sinica 72v112) for visiting scholars (to DS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shiuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KC., Wey, MT., Kan, LS. et al. Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Appl Biochem Biotechnol 158, 631–641 (2009). https://doi.org/10.1007/s12010-008-8348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8348-3

Keywords

Navigation