Skip to main content
Log in

Lactase Production by Solid-state Cultivation of Kluyveromyces marxianus CDBBL 278 on an Inert Support: Effect of Inoculum, Buffer, and Nitrogen Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A study was carried out to select the conditions for cultivation of Kluyveromyces marxianus CDBBL 278 in solid-state culture (SSC) using polyurethane foam (PUF) as an inert support. PUF was impregnated with culture media containing lactose (50 g/L) as the carbon and energy source. Evaluation of culture parameters during different growth phases was carried out by respirometry. The effect of inoculum level, buffer capacity of the medium, and nitrogen source upon the yield of biomass on lactose (Yx/s) and production of lactase and inulinase was investigated. The highest lactase titre was achieved with an inoculum level of 1 × 107 cells per gram of wet matter (gwm) and 20% of the total nitrogen source provided as urea. The best biomass yield (0.37) was obtained when less than 40% of the total nitrogen was provided as urea. Using potassium phosphate allowed 90% substrate consumption in 30 h. In the best conditions, intracellular lactase and extracellular inulinase activities of 1147.7 IU/gX and 241.6 IU/gX were obtained, respectively, with a lag phase of 13.8 h and a rate of respiratory activity (μ CO2) of 0.23 ± 0.01 h−1. To our knowledge, this is the first report on lactase production by K. marxianus CDBBL 278 in SSC. This study gives basic information about biomass yield and enzyme production using lactose as the sole carbon source in SSC on an inert support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siso, M. I. G. (1996). Bioresource Technology, 57, 1–11.

    Article  Google Scholar 

  2. Marwaha, S., & Kennedy, J. (1988). Food Science and Technology, 23, 323–336.

    Google Scholar 

  3. Siso, M., Picos, M., Ramil, E., Domínguez, M., Torres, A., & Cerdán, M. (2000). Enzyme and Microbia. Technology, 26, 699–705.

    Article  Google Scholar 

  4. Castillo, J., & Ugalde, U. (1993). Applied Microbiology and Biotechnology, 40, 386–393.

    Google Scholar 

  5. Cortés, G., Trujillo-Roldán, A., Ramírez, T., & Galindo, E. (2005). Process Biochemistry, 40, 773–778.

    Article  Google Scholar 

  6. Belem, M., & Lee, B. (1998). Critical Reviews in Food Science, 38, 565–598.

    Article  CAS  Google Scholar 

  7. Castillo, J. (1990). In H. Verachtert, & R. DeMot (Eds.), Yeast biotechnology and biocatalysis pp. 297–320. New York: Marcel Dekker Inc.

    Google Scholar 

  8. Gómez-Ruíz, L., García-Garibay, M., & y Bárzana, E. (1988). Journal of Food Science, 53, 1236–1240.

    Article  Google Scholar 

  9. Guiraud, J. P., & Galzy, P. (1990). In H. Verachtert, & R. DeMot (Eds.), Yeast biotechnology and biocatalysis pp. 267–272. New York: Marcel Dekker.

    Google Scholar 

  10. Wittmann, C., Hans, M., & Bluemke, W. (2002). Yeast, 19, 1351–1363.

    Article  CAS  Google Scholar 

  11. Ballesteros, M., Olivia, J., Negro, M., Manzanares, P., & y Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848.

    Article  CAS  Google Scholar 

  12. Becerra, M., Rodríguez, B., Esparza, C., & González-Siso, I. (2004). Journal of Biotechnology, 109, 132–137.

    Article  Google Scholar 

  13. Chao-Chun, C. H., Mei-Ching, Y., Tzu-Chien, C. H., Dey-Chyi, S. H., Kow-Jen, D., & Wei-Lun, T. (2006). Biotechnology Letters, 28, 793–797.

    Article  Google Scholar 

  14. Cruz-Guerrero, A., Olvera, L., García-Garibay, M., & Gómez-Ruiz, L. (2006). World Journal of Microbiology and Biotechnology, 22, 115–117.

    Article  CAS  Google Scholar 

  15. Longhi, L., Luvizetto, D., Ferreira, L., Rech, R., Ayub, M., & Secchi, A. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 35–40.

    Article  CAS  Google Scholar 

  16. Lukondeh, T., Ashbolt, N., & Rogers, P. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 284–288.

    Article  CAS  Google Scholar 

  17. Squarezi, C., Longo, C., Ceni, G., Boni, G., Silva, M., Di Luccio, M., et al. (2007). Food and Bioprocess Technology. doi:10.1007/s11947-007-0042-x

  18. Wilkins, M., Suryawati, L., Maness, N., & Chrz, D. (2007). World Journal of Microbiology and Biotechnology, 23, 1161–1168.

    Article  CAS  Google Scholar 

  19. Selvakumar, P., & Pandey, A. (1999). Process Biochemistry, 34, 851–855.

    Article  CAS  Google Scholar 

  20. Medeiros, A., Pandey, A., Freitas, R., Christen, P., & Soccol, C. (2001). Biochemical Engineering Journal, 6, 33–39.

    Article  Google Scholar 

  21. Medeiros, A., Pandey, A., Christen, P., Fontoura, P., Freitas, R., & Soccol, C. (2000). World Journal of Microbiology and Biotechnology, 17, 767–771.

    Article  Google Scholar 

  22. Mazutti, M., Bender, J., Treichel, H., & Di Luccio, M. (2006). Enzyme and Microbial Technology, 39, 56–59.

    Article  CAS  Google Scholar 

  23. Mazutti, M., Ceni, G. J., Di Luccio, M., & Treichel, H. (2007). Bioprocess and Biosystems Engineering, 30, 297–304.

    Article  CAS  Google Scholar 

  24. Carrizales, V., & Rodríguez, H. (1981). Biotechnology and Bioengineering, 23, 321–323.

    Article  Google Scholar 

  25. Saucedo-Castañeda, G., Trejo-Hernández, M., Lonsane, B., Navarro, J., Roussos, S., & Raimbault, D. (1994). Process Biochemistry, 29, 13–24.

    Article  Google Scholar 

  26. Barberis, S., & Segovia, R. (2002). Journal of Chemical Technology & Biotechnology, 77, 706–710.

    Article  CAS  Google Scholar 

  27. Nelson, N. (1944). Journal of Biological Chemistry, 153, 375–381.

    CAS  Google Scholar 

  28. Espinoza, P., Bárzana, E., García-Garibay, M., & Gómez-Ruiz, L. (1992). Biotechnology Letters, 14, 1053–1058.

    Article  CAS  Google Scholar 

  29. Cruz-Guerrero, A., Bárzana, E., García-Garibay, M., & Gómez-Ruiz, L. (1999). Process Biochemistry, 34, 621–624.

    Article  CAS  Google Scholar 

  30. Mahoney, R. (1998). Food Chemistry, 63(2), 147–154.

    Article  CAS  Google Scholar 

  31. Jurado, E., Camacho, F., Luzón, G., & Vicaria, M. (2004). Enzyme and Microbial Technology, 34, 33–40.

    Article  CAS  Google Scholar 

  32. Gómez, A., & Castillo, J. (1983). Biotechnology and Bioengineering, 25, 1341–1357.

    Article  Google Scholar 

  33. Sánchez, L., & Castillo, J. (1980). Acta Cient. Venez., 31, 154–159.

    Google Scholar 

  34. Barberis, S., & Gentina, J. (1998). Journal of Chemical Technology & Biotechnology, 73, 71–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Alma Cruz Guerrero from UAMI for the donation of the yeast strain, and also to the finance granted by CONACYT (Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Saucedo-Castañeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovar-Castro, L., García-Garibay, M. & Saucedo-Castañeda, G. Lactase Production by Solid-state Cultivation of Kluyveromyces marxianus CDBBL 278 on an Inert Support: Effect of Inoculum, Buffer, and Nitrogen Source. Appl Biochem Biotechnol 151, 610–617 (2008). https://doi.org/10.1007/s12010-008-8268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8268-2

Keywords

Navigation