Skip to main content
Log in

Hyoscyamine Biosynthesis in Datura stramonium Hairy Root In Vitro Systems with Different Ploidy Levels

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hyoscyamine biosynthesis in Datura stramonium hairy roots with different ploidy levels was investigated. For the first time, we report that hairy roots undergo endoreduplication and therefore consist mainly of cells with doupled sets of chromosomes of primary plant tissues, used for Agrobacterium transformation. The alkaloid profiles of hairy roots obtained from diploid and tetraploid plants were similar in terms of the major compounds, but they differed significantly with respect to the minor compounds (here defined as those that accounted for <1% of the total ion current of the alkaloid mixture in gas chromatography–mass spectrometric analyses). Significant differences in the effects of the main nutrients on the growth of the hairy roots obtained from diploid and tetraploid plants and their hyoscyamine contents were observed. The maximal yield of hyoscyamine (177 mg/L) was obtained when hairy roots from tetraploid plants were cultivated in Murashige–Skoog nutrient medium supplemented with 6% sucrose. Time courses of utilization of the main nutrients in the medium during cultivation of D. stramonium hairy root cultures are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matsuda, J., Okabe, S., Hashimoto, T., & Yamada, Y. (1991). Journal of Biological Chemistry, 266, 9460–9464 Medline.

    CAS  Google Scholar 

  2. Pitta-Alvarez, S. I., Spolansky, T. C., & Giulietti, A. M. (2000). Enzyme and Microbial Technology, 26, 252–258 DOI 10.1016/S0141-0229(99)00137-4, Medline.

    Article  CAS  Google Scholar 

  3. Zabetakis, I., Edwards, R., & O’Hagan, D. (1999). Phytochemistry, 50, 53–56. DOI 10.1016/S0031-9422(98)00490-7.

    Article  CAS  Google Scholar 

  4. Bensaddek, L., Gillet, F., Sausedo, J., & Fliniaux, M.–A. (2001). Journal of Biotechnology, 85, 35–40 DOI 10.1016/S0168-1656(00)00372-2, Medline.

    Article  CAS  Google Scholar 

  5. Berkov, S., Pavlov, A., Kovatcheva, P., Stanimirova, P., & Philipov, S. (2003). Zeitschrift für Naturforschung, 58c, 42–46.

    Google Scholar 

  6. Baiza, A., Quiroz-Moreno, A., Ruiz, J., & Loyola-Vargas, V. (1999). Plant Cell, Tissue and Organ Culture, 59, 9–17. DOI 10.1023/A:1006398727508.

    Article  Google Scholar 

  7. Stebbins, G. L. (1971). Chromosomal evolution in higher plants. London: Edward Arnold.

    Google Scholar 

  8. Berkov, S., & Philipov, S. (2003). Pharmaceutical Biology, 40, 617–621.

    Article  Google Scholar 

  9. Lavania, U. C. (2005). Plant Genetic Resources, 3, 170–177.

    Article  CAS  Google Scholar 

  10. Dhawan, O. P., & Lavania, U. C. (1996). Euphytica, 87, 81–89. DOI 10.1007/BF00021879.

    Article  CAS  Google Scholar 

  11. De Jesus-Gonzalez, L., & Weathers, P. J. (2003). Plant Cell Reports, 21, 809–813 Medline.

    Google Scholar 

  12. Pundir, R. P. S., Rao, N. K., & van der Maesen, L. J. G. (1983). Theoretical and Applied Genetic, 65, 119–122. DOI 10.1007/BF00264878.

    Article  Google Scholar 

  13. Berkov, S., & Pavlov, A. (2004). Phytochemical Analysis, 15, 141–145 DOI 10.1002/pca.756, Medline.

    Article  CAS  Google Scholar 

  14. Dixon, R. A. (1985). In R. A. Dixon (Ed.), Plant cell culture—A practical approach: Isolation and maintenance of callus and cell suspension cultures pp. 1–20. Oxford: IRL.

  15. Pavlov, A., Georgiev, V., & Ilieva, M. (2005). Process Biochemistry, 40, 1531–1533. DOI 10.1016/j.procbio.2004.01.001.

    Article  CAS  Google Scholar 

  16. Sung, L.-S., & Huang, S.-Y. (2000). Biotechnology Progress, 16, 1135–1140 DOI 10.1021/bp000062t, Medline.

    Article  CAS  Google Scholar 

  17. Georgiev, M., Pavlov, A., & Bley, Th. (2007). Applied Microbiology and Biotechnology, 74, 1175–1185 DOI 10.1007/s00253-007-0856-5, Medline.

    Article  CAS  Google Scholar 

  18. Bayliss, M. W. (1980). International Review of Cytology, 1117, 113–144.

    Google Scholar 

  19. Payne, J., Hamill, J. D., Robins, R. J., & Rhodes, M. J. C. (1987). Planta Medica, 53, 474–478 DOI 10.1055/s-2006–962776, Medline.

    Article  CAS  Google Scholar 

  20. Kudo, N., & Kimura, Y. (2002). Plant Biotechnology, 19, 45–52.

    CAS  Google Scholar 

  21. Peter, C. L. J., & Ruhu, Q. I. (2008). Trends In Plant Science, 13, 121–127 Medline.

    Google Scholar 

  22. Pavlov, A., & Bley, Th. (2006). Process Biochemistry, 41, 848–852. DOI 10.1016/j.procbio.2005.10.026.

    Article  CAS  Google Scholar 

  23. Pavlov, A., Berkov, S., Courot, E., Gocheva, T., Tuneva, D., Pandova, B., & Georgiev, M. (2007). Process Biochemistry, 42, 734–739. DOI 10.1016/j.procbio.2006.12.006.

    Article  CAS  Google Scholar 

  24. Patterson, S., & O'Hagan, D. (2002). Phytochemistry, 61, 323–329. DOI 10.1016/S0031-9422(02)00200-5.

    Article  CAS  Google Scholar 

  25. Witte, L., Müller, K., & Alfermann, H.-A. (1987). Planta Medica, 52, 192–197.

    Article  Google Scholar 

  26. Ionkova, I., Witte, L., & Alfermann, H. A. (1994). Planta Medica, 60, 382–384 DOI 10.1055/s-2006–959509, Medline.

    Article  CAS  Google Scholar 

  27. Ilieva, M., & Pavlov, A. (1997). Applied Microbiology and Biotechnology, 47, 683–688. DOI 10.1007/s002530050995.

    Article  CAS  Google Scholar 

  28. Shin, K. S., Chakrabarty, D., Ko, J. Y., Han, S. S., & Paek, K. Y. (2003). Plant Growth Regulation, 39, 187–193. DOI 10.1023/A:1022525308389.

    Article  CAS  Google Scholar 

  29. Su, W. W. (1995). Applied Biochemistry and Biotechnology, 50, 189–229. DOI 10.1007/BF02783455.

    Article  CAS  Google Scholar 

  30. Robins, R. G., Parr, A. G., Payne, J., Walton, N. J., & Rhodes, M. G. C. (1990). Planta, 181, 414–422. DOI 10.1007/BF00195896.

    Article  CAS  Google Scholar 

  31. Parr, A., Payne, J., Eagles, J., Chapman, R., Robins, R., & Rhodes, M. (1990). Phytochemistry, 29, 2545–2550. DOI 10.1016/0031-9422(90)85185-I.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a Marie Curie Fellowship of the European Community program “Development Host Fellowships” under contract number HPMD-CT-2001-00092, DAAD, references number D/05/01303, and the Bulgarian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pavlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A., Berkov, S., Weber, J. et al. Hyoscyamine Biosynthesis in Datura stramonium Hairy Root In Vitro Systems with Different Ploidy Levels. Appl Biochem Biotechnol 157, 210–225 (2009). https://doi.org/10.1007/s12010-008-8264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8264-6

Keywords

Navigation