Skip to main content
Log in

Denitrification in presence of benzene, toluene, and m-xylene

Kinetics, mass balance, and yields

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Denitrification of the electron donors toluene-C(15–100 mg/L), m-xylene-C (15–70 mg/L), benzene-C (5–25 mg/L), and acetate-C as experimental reference (50–140 mg/L) was carried out in batch culture. An initial concentration of 1.1±0.15 g of volatile suspended solids/L of denitrifying sludge without previous exposure to aromatic compounds was used as inoculum. The results showed toluene and nitrate consumption efficiency (E T and E N′ respectively) of 100%. Toluene was completely mineralized (oxidized) to CO2. In all cases, the N2N2) and HCO 3 yields (γHCO3) were 0.97±0.01 and 0.8±0.05, respectively. The consumption efficiency (E x ) of m-xylene (53±5.7%) was partial. The γN2 and γHCO3 were 0.96±0.01 and 0.86±0.02, respectively. Benzene was not consumed under denitrifying conditions. The specific consumption rates of toluene (q T ) and m-xylene (q X ) were lower than that of acetate (q A ). The differences in specific consumption rates were probably owing to the negative effect of benzene, toluene, and isomers of xylene on the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans, P. J., Dzung, T., Mang, D. T., Kim, K. S., and Young, Y. L. (1991), Appl. Environ. Microbiol. 57, 1139–1145.

    CAS  Google Scholar 

  2. Gersberg, R., Dawsey, W. J., and Ritgeway, H. F. (1989), in Petroleum Contaminated Soils, vol. 2, Lewis Publishers, Chelsea, MI, pp. 211–217.

    Google Scholar 

  3. Dean, B. (1978), Mutat. Res. 47, 75–97.

    CAS  Google Scholar 

  4. Reinhard, M., Shang, S., Kitanidis, P. K., Orwin, E., Hopkins, G. D., and Lebron, C. A. (1997), Environ. Sci. Technol. 31, 28–36.

    Article  CAS  Google Scholar 

  5. Edwards, E. A. and Garbic-Galic, D. (1994), Appl. Environ. Microbiol. 60, 313–322.

    CAS  Google Scholar 

  6. Elmén, J., Pan, W., Leung, S. Y., Magyarosy, A., and Keasling, J. D. (1997), Biotechnol. Bioeng. 55, 82–90.

    Article  Google Scholar 

  7. Phelps, C. D. and Young, L. Y. (1999), Biodegradation 10, 15–25.

    Article  CAS  Google Scholar 

  8. Gomez, J., Méndez, R., and Lema, J. (1996), Appl. Biochem. Biotechnol. 57/58, 869–876.

    CAS  Google Scholar 

  9. Cuervo-López, F. M., Martínez, F., Gutiérrez-Rojas, M., Noyola R. A., and Gómez, J. (1999), Water Sci. Technol. 40, 123–130.

    Article  Google Scholar 

  10. APHA. (1995), Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC.

    Google Scholar 

  11. Evans, P. J., Mang, D. T., and Young, Y. L. (1991), Appl. Environ. Microbiol. 57, 450–454.

    CAS  Google Scholar 

  12. Schocher, R. J., Seyfried, B., Vazquez, F., and Zeyer, J. (1991), Arch. Microbiol. 157, 7–12.

    Article  CAS  Google Scholar 

  13. Alvarez, P. J. J. and Vogel, T. M. (1995), Water Sci. Technol. 31(1), 15–28.

    Article  CAS  Google Scholar 

  14. Häner, A., Höhener, P., and Zeyer, J. (1995), Appl. Environ. Microbiol. 61, 3185–3188.

    Google Scholar 

  15. Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, A. (1991), Appl. Environ. Microbiol. 57(8), 2403–2407.

    CAS  Google Scholar 

  16. Ball, H. A. and Reinhhard, M. (1996), Environ. Toxicol. Chem. 15, 114–122.

    Article  CAS  Google Scholar 

  17. Kazumi, J., Caldwell, M. E., Suflita, J. M., Loveley, D. R., and Young, Y. L. (1997), Environ. Sci. Technol. 31, 813–818.

    Article  CAS  Google Scholar 

  18. Akunna, J. C., Bizeau, C., and Moletta, R. (1993), Water Res. 27(8), 1303–1312.

    Article  Google Scholar 

  19. Fass, S., Ganaye, V., Urbain, V., Manein, J., and Brock, J. C. (1994), Environ. Technol. 15, 459–467.

    Article  CAS  Google Scholar 

  20. Ramos, J. L., Duques, E., Rodríguez-Herva, J. J., Godoy, P., Haidour, A., and Fernández-Barrera, A. (1997), J. Biol. Chem. 272(7), 3887–3890.

    Article  CAS  Google Scholar 

  21. Fang, J., Barcelona, M. J., and Alvarez, P. J. J. (2000), Appl. Microbiol. Biotechnol. 54, 382–389.

    Article  CAS  Google Scholar 

  22. Sikkema, J., de Bont, J. A. M., and Poolman, B. (1994), J. Biol. Chem. 269, 8022–8028.

    CAS  Google Scholar 

  23. Alvarez, P. J. J., Anid, P. J., and Vogel, T. M. (1994), J. Environ. Eng. 120, 1327–1336.

    Article  Google Scholar 

  24. Harms, G., Rabus, R., and Widdel, F. (1999), Arch. Microbiol. 172, 303–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña-Calva, A., Olmos-Dichara, A., Viniegra-González, G. et al. Denitrification in presence of benzene, toluene, and m-xylene. Appl Biochem Biotechnol 119, 195–208 (2004). https://doi.org/10.1007/s12010-004-0002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-004-0002-0

Index Entries

Navigation