Skip to main content
Log in

Recent progress of zeolitic imidazolate frameworks (ZIFs) in superhydrophobic and anticorrosive coatings for metals and their alloys

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have gained interest in recent years for anticorrosion applications owing to their inimitable structures and excellent properties. As a prominent subclass of MOFs, zeolite imidazolate frameworks (ZIFs) exhibited hydrophobicity, corrosion inhibition, and positive water stability, making them frequently appear in the field of metallic anticorrosion. This review presents the establishment and development of a theoretical model for superhydrophobicity, followed by the reported applications of different kinds of ZIFs in the field of metallic anticorrosion with particular emphasis on ZIF-8, which is the most extensively researched structure among ZIFs. In addition, the applications of superhydrophobic coatings in many aspects other than anticorrosion are also summarized. Finally, the existing challenging problems and future development trends of this kind of coating are discussed. It is hoped that this review will contribute to further development in the field of superhydrophobic anticorrosion coatings for metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou, CL, Pan, MF, Li, SJ, Sun, YX, Zhang, HJ, Luo, XH, Liu, YL, Zeng, HB, “Metal Organic Frameworks (MOFs) as Multifunctional Nanoplatform for Anticorrosion Surfaces and Coatings.” Adv. Colloid Interface Sci., 305 24 (2022)

    Article  Google Scholar 

  2. Ouakki, M, Galai, M and Cherkaoui, M, "Imidazole Derivatives as Efficient and Potential Class of Corrosion Inhibitors for Metals and Alloys in Aqueous Electrolytes: A Review." J. Mol. Liq., 8 (2022)

  3. Beamish, FE, The Analytical Chemistry of the Noble Metals. Pergamon Press, (2013)

  4. Schmitt, G, “Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control.” World Corros. Org., 38 14 (2009)

    Google Scholar 

  5. Aslam, R, Mobin, M, Aslam, J, Aslam, A, Zehra, S, Masroor, S, “Application of Surfactants as Anticorrosive Materials: A Comprehensive Review.” Adv. Colloid Interface Sci., 295 65 (2021)

    Article  Google Scholar 

  6. Koch, G, Vaney, J, Tompson, N, Moghissi, O, Gould, M, Payer, J, “International Measures of Prevention, Application, and Economics of Corrosion Technologies Study.” NACE Int., 216 2 (2016)

    Google Scholar 

  7. Song, JF, She, J, Chen, DL, Pan, FS, “Latest Research Advances on Magnesium and Magnesium Alloys Worldwide.” J. Magnes. Alloy., 8 (1) 1–41 (2020)

    Article  CAS  Google Scholar 

  8. Liu, Q, Chen, DX, Kang, ZX, “One-Step Electrodeposition Process to Fabricate Corrosion-Resistant Superhydrophobic Surface on Magnesium Alloy.” ACS Appl. Mater. Interfaces, 7 (3) 1859–1867 (2015)

    Article  CAS  Google Scholar 

  9. Liu, Y, Li, SY, Zhang, JJ, Liu, JA, Han, ZW, Ren, LQ, “Corrosion Inhibition of Biomimetic Super-Hydrophobic Electrodeposition Coatings on Copper Substrate.” Corros. Sci., 94 190–196 (2015)

    Article  CAS  Google Scholar 

  10. Fan, F, Zhou, CY, Wang, X, Szpunar, J, “Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.” ACS Appl. Mater. Interfaces, 7 (49) 27271–27278 (2015)

    Article  CAS  Google Scholar 

  11. Duan, YY, Wu, Y, Yan, R, Lin, M, Sun, SJ, Ma, HY, “Chitosan-Sodium Alginate-Based Coatings for Self-Strengthening Anticorrosion and Antibacterial Protection of Titanium Substrate in Artificial Saliva.” Int. J. Biol. Macromol., 184 109–117 (2021)

    Article  CAS  Google Scholar 

  12. Chen, YN, Ren, BH, Gao, SY, Cao, R, “The Sandwich-Like Structures of Polydopamine and 8-Hydroxyquinoline Coated Graphene Oxide for Excellent Corrosion Resistance of Epoxy Coatings.” J. Colloid Interface Sci., 565 436–448 (2020)

    Article  CAS  Google Scholar 

  13. Long, Y, Wu, L, Pan, FS, Zhang, ZY, Yang, MZ, Tang, AT, Zhang, G, Liu, L, Atrens, A, “A Graphene Spin Coatings for Cost-Effective Corrosion Protection for the Magnesium Alloy AZ31.” J. Nanosci. Nanotechnol., 19 (1) 105–111 (2019)

    Article  CAS  Google Scholar 

  14. Lv, DM, Ou, JF, Xue, MS, Wang, FJ, “Stability and Corrosion Resistance of Superhydrophobic Surface on Oxidized Aluminum in NaCl Aqueous Solution.” Appl. Surf. Sci., 333 163–169 (2015)

    Article  CAS  Google Scholar 

  15. Wang, N, Xiong, DS, Deng, YL, Shi, Y, Wang, K, “Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties.” ACS Appl. Mater. Interfaces, 7 (11) 6260–6272 (2015)

    Article  CAS  Google Scholar 

  16. Yan, LC, Zhou, M, Pang, XL, Gao, KW, “One-Step In Situ Synthesis of Reduced Graphene Oxide/Zn-Al Layered Double Hydroxide Film for Enhanced Corrosion Protection of Magnesium Alloys.” Langmuir, 35 (19) 6312–6320 (2019)

    Article  CAS  Google Scholar 

  17. Ou, JF, Hu, WH, Xue, MS, Wang, FJ, Li, W, “Superhydrophobic Surfaces on Light Alloy Substrates Fabricated by a Versatile Process and Their Corrosion Protection.” ACS Appl. Mater. Interfaces, 5 (8) 3101–3107 (2013)

    Article  CAS  Google Scholar 

  18. Yang, WF, Zhang, ZD, Zhang, JF, Zhao, XM, Li, QM, Liang, QZ, “The Research and Preparation of the Bionic Super Hydrophobic PVDF Membrane.” J. Funct. Mater., 48 (07) 7023–7027 (2017)

    CAS  Google Scholar 

  19. Peng, CW, Chang, KC, Weng, CJ, Lai, MC, Hsu, CH, Hsu, SC, Hsu, YY, Hung, WI, Wei, Y, Yeh, JM, “Nano-Casting Technique to Prepare Polyaniline Surface with Biomimetic Superhydrophobic Structures for Anticorrosion Application.” Electrochim. Acta, 95 192–199 (2013)

    Article  CAS  Google Scholar 

  20. Figueira, RB, Silva, CJR, Pereira, EV, “Organic-Inorganic Hybrid Sol-Gel Coatings for Metal Corrosion Protection: A Review of Recent Progress.” J. Coat. Technol. Res., 12 (1) 1–35 (2015)

    Article  CAS  Google Scholar 

  21. Rao, AV, Latthe, SS, Mahadik, SA, Kappenstein, C, “Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-Gel Coatings on Copper Substrate.” Appl. Surf. Sci., 257 (13) 5772–5776 (2011)

    Article  CAS  Google Scholar 

  22. Rezaei, S, Manoucheri, I, Moradian, R, Pourabbas, B, “One-Step Chemical Vapor Deposition and Modification of Silica Nanoparticles at the Lowest Possible Temperature and Superhydrophobic Surface Fabrication.” Chem. Eng. J., 252 11–16 (2014)

    Article  CAS  Google Scholar 

  23. Zhao, ZJ, Hou, TY, Wu, NN, Jiao, SP, Zhou, K, Yin, J, Suk, JW, Cui, X, Zhang, MF, Li, SP, Qu, Y, Xie, WG, Li, XB, Zhao, CX, Fu, Y, Hong, RD, Guo, SS, Lin, DQ, Cai, WW, Mai, WJ, Luo, ZT, Tian, YT, Lai, Y, Liu, YY, Colombo, L, Hao, YF, “Polycrystalline Few-Layer Graphene as a Durable Anticorrosion Film for Copper.” Nano Lett., 21 (2) 1161–1168 (2021)

    Article  CAS  Google Scholar 

  24. Fu, X, Du, WB, Dou, HX, Fan, Y, Xu, JN, Tian, LM, Zhao, J, Ren, LQ, “Nanofiber Composite Coating with Self-Healing and Active Anticorrosive Performances.” ACS Appl. Mater. Interfaces, 13 (48) 57880–57892 (2021)

    Article  CAS  Google Scholar 

  25. AlFalah, MGK, Kamberli, E, Abbar, AH, Kandemirli, F, Saracoglu, M, “Corrosion Performance of Electrospinning Nanofiber ZnO-NiO-CuO/Polycaprolactone Coated on Mild Steel in Acid Solution.” Surf. Interfaces, 21 13 (2020)

    Google Scholar 

  26. Simpson, JT, Hunter, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Prog. Phys., 78 (8) 14 (2015)

    Article  Google Scholar 

  27. Liu, MJ, Zheng, YM, Zhai, J, Jiang, L, “Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion.” Acc. Chem. Res., 43 (3) 368–377 (2010)

    Article  CAS  Google Scholar 

  28. Goodwyn, PP, Maezono, Y, Hosoda, N, Fujisaki, K, “Waterproof and Translucent Wings at the Same Time: Problems and Solutions in Butterflies.” Naturwissenschaften, 96 (7) 781–787 (2009)

    Article  Google Scholar 

  29. Gao, XF, Jiang, L, “Water-Repellent Legs of Water Striders.” Nature, 432 (7013) 36–36 (2004)

    Article  CAS  Google Scholar 

  30. Liu, MJ, Wang, ST, Jiang, L, “Nature-Inspired Superwettability Systems.” Nat. Rev. Mater., 2 (7) 17 (2017)

    Article  Google Scholar 

  31. Lafuma, A, Quere, D, “Superhydrophobic States.” Nat. Mater., 2 (7) 457–460 (2003)

    Article  CAS  Google Scholar 

  32. Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 (1) 1–8 (1997)

    Article  CAS  Google Scholar 

  33. Neinhuis, C, Barthlott, W, “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces.” Ann. Bot., 79 (6) 667–677 (1997)

    Article  Google Scholar 

  34. Liu, H, Feng, L, Zhai, J, Jiang, L, Zhu, DB, “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity.” Langmuir, 20 (14) 5659–5661 (2004)

    Article  CAS  Google Scholar 

  35. Li, QM, Liu, H, Zhang, SD, Zhang, DB, Liu, XH, He, YX, Mi, LW, Zhang, JX, Liu, CT, Shen, CY, Guo, ZH, “Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property.” ACS Appl. Mater. Interfaces, 11 (24) 21904–21914 (2019)

    Article  CAS  Google Scholar 

  36. Janout, V, Myers, SB, Register, RA, Regen, SL, “Self-Cleaning Resins.” J. Am. Chem. Soc., 129 (17) 5756–5759 (2007)

    Article  CAS  Google Scholar 

  37. Kamegawa, T, Shimizu, Y, Yamashita, H, “Superhydrophobic Surfaces with Photocatalytic Self-Cleaning Properties by Nanocomposite Coating of TiO2 and Polytetrafluoroethylene.” Adv. Mater., 24 (27) 3697–3700 (2012)

    Article  CAS  Google Scholar 

  38. Cao, WT, Liu, YJ, Ma, MG, Zhu, JF, “Facile Preparation of Robust And Superhydrophobic Materials for Self-Cleaning and Oil/Water Separation.” Colloids Surf. Physicochem. Eng. Aspects, 529 18–25 (2017)

    Article  CAS  Google Scholar 

  39. Yin, YS, Liu, T, Chen, SG, Liu, T, Cheng, S, “Structure Stability and Corrosion Inhibition of Super-Hydrophobic Film on Aluminum in Seawater.” Appl. Surf. Sci., 255 (5) 2978–2984 (2008)

    Article  CAS  Google Scholar 

  40. Yaghi, OM, Li, GM, Li, HL, “Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework.” Nature, 378 (6558) 703–706 (1995)

    Article  CAS  Google Scholar 

  41. Yaghi, OM, Li, HL, “Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels.” J. Am. Chem. Soc., 117 (41) 10401–10402 (1995)

    Article  CAS  Google Scholar 

  42. Morozan, A, Jaouen, F, “Metal Organic Frameworks for Electrochemical Applications.” Energy Environ. Sci., 5 (11) 9269–9290 (2012)

    Article  CAS  Google Scholar 

  43. Dhakshinamoorthy, A, Li, ZH, Garcia, H, “Catalysis and Photocatalysis by Metal Organic Frameworks.” Chem. Soc. Rev., 47 (22) 8134–8172 (2018)

    Article  CAS  Google Scholar 

  44. Meng, JS, Liu, X, Niu, CJ, Pang, Q, Li, JT, Liu, F, Liu, Z, Mai, LQ, “Advances in Metal-Organic Framework Coatings: Versatile Synthesis and Broad Applications.” Chem. Soc. Rev., 49 (10) 3142–3186 (2020)

    Article  CAS  Google Scholar 

  45. Chen, HY, "Application Research of Metal-Organic Frameworks in Marine Corrosion Detection and Protection." University of Chinese Academy of Sciences, (2019)

  46. Li, J, Wang, H, Yuan, XZ, Zhang, JJ, Chew, JW, “Metal-Organic Framework Membranes for Wastewater Treatment and Water Regeneration.” Coord. Chem. Rev., 404 31 (2020)

    Article  Google Scholar 

  47. Nozari, V, Calahoo, C, Tuffnell, JM, Adelhelm, P, Wondraczek, K, Dutton, SE, Bennett, TD, Wondraczek, L, “Sodium Ion Conductivity in Superionic IL-Impregnated Metal-Organic Frameworks: Enhancing Stability Through Structural Disorder.” Sci. Rep., 10 (1) 9 (2020)

    Article  Google Scholar 

  48. Farha, OK, Yazaydin, AO, Eryazici, I, Malliakas, CD, Hauser, BG, Kanatzidis, MG, Nguyen, ST, Snurr, RQ, Hupp, JT, “De Novo Synthesis of a Metal-Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities.” Nat. Chem., 2 (11) 944–948 (2010)

    Article  CAS  Google Scholar 

  49. Bonneau, M, Lavenn, C, Zheng, JJ, Legrand, A, Ogawa, T, Sugimoto, K, Coudert, FX, Reau, R, Sakaki, S, Otake, KI, Kitagawa, S, “Tunable Acetylene Sorption by Flexible Catenated Metal-Organic Frameworks.” Nat. Chem., 14 (7) 816 (2022)

    Article  CAS  Google Scholar 

  50. Herm, ZR, Swisher, JA, Smit, B, Krishna, R, Long, JR, “Metal-Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture.” J. Am. Chem. Soc., 133 (15) 5664–5667 (2011)

    Article  CAS  Google Scholar 

  51. Yang, LZ, Yan, LT, Niu, WJ, Feng, Y, Fu, QJ, Zhang, S, Zhang, YH, Li, LJ, Gu, X, Dai, PC, Liu, DD, Zheng, QB, Zhao, XB, “Adsorption in Reversed Order of C2 Hydrocarbons on an Ultramicroporous Fluorinated Metal-Organic Framework.” Angew. Chem. Int. Ed., 61 (25) e202204046 (2022)

    Article  CAS  Google Scholar 

  52. Zhou, H, Hui, XD, Li, DX, Hu, DL, Chen, X, He, XM, Gao, LX, Huang, H, Lee, C, Mu, XJ, “Metal-Organic Framework-Surface-Enhanced Infrared Absorption Platform Enables Simultaneous On-Chip Sensing of Greenhouse Gases.” Adv. Sci., 7 (20) 11 (2020)

    Article  Google Scholar 

  53. Zhang, HW, Li, HK, Han, ZY, Yuan, RR, He, HM, “Incorporating Fullerenes in Nanoscale Metal-Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin.” ACS Appl. Mater. Interfaces, 14 (5) 7350–7357 (2022)

    Article  Google Scholar 

  54. Zhang, RR, Hu, L, Bao, SX, Li, R, Gao, L, Li, R, Chen, QW, “Surface Polarization Enhancement: High Catalytic Performance of Cu/CuOx/C Nanocomposites Derived from Cu-BTC for CO Oxidation.” J. Mater. Chem. A, 4 (21) 8412–8420 (2016)

    Article  CAS  Google Scholar 

  55. Man, TT, Xu, CX, Liu, XY, Li, D, Tsung, CK, Pei, H, Wan, Y, Li, L, “Hierarchically Encapsulating Enzymes with Multi-Shelled Metal-Organic Frameworks for Tandem Biocatalytic Reactions.” Nat. Commun., 13 (1) 12 (2022)

    Article  Google Scholar 

  56. An, JY, Geib, SJ, Rosi, NL, “Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework.” J. Am. Chem. Soc., 131 (24) 8376 (2009)

    Article  CAS  Google Scholar 

  57. Cai, W, Wang, JQ, Chu, CC, Chen, W, Wu, CS, Liu, G, “Metal Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery.” Adv. Sci., 6 (1) 20 (2019)

    Article  Google Scholar 

  58. Yao, JF, Wang, HT, “Zeolitic Imidazolate Framework Composite Membranes and Thin Films: Synthesis and Applications.” Chem. Soc. Rev., 43 (13) 4470–4493 (2014)

    Article  CAS  Google Scholar 

  59. Phan, A, Doonan, CJ, Uribe-Romo, FJ, Knobler, CB, O’Keeffe, M, Yaghi, OM, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks.” Acc. Chem. Res., 43 (1) 58–67 (2010)

    Article  CAS  Google Scholar 

  60. Feng, Y, Wang, HT, Yao, JF, “Synthesis of 2D Nanoporous Zeolitic Imidazolate Framework Nanosheets for Diverse Applications.” Coord. Chem. Rev., 431 24 (2021)

    Article  Google Scholar 

  61. Liu, B, Jian, MP, Wang, H, Zhang, GS, Liu, RP, Zhang, XW, Qu, JH, “Comparing Adsorption of Arsenic and Antimony from Single-Solute and Bi-Solute Aqueous Systems Onto ZIF-8.” Colloids Surf. Physicochem. Eng. Asp., 538 164–172 (2018)

    Article  CAS  Google Scholar 

  62. He, LZ, Huang, GN, Liu, HX, Sang, CC, Liu, XX, Chen, TF, “Highly Bioactive Zeolitic Imidazolate Framework-8-Capped Nanotherapeutics for Efficient Reversal of Reperfusion-Induced Injury in Ischemic Stroke.” Sci. Adv., 6 (12) 14 (2020)

    Article  Google Scholar 

  63. Liang, ZD, Wang, HQ, Zhang, KN, Ma, G, Zhu, LS, Zhou, L, Yan, B, “Oxygen-Defective MnO2/ZIF-8 Nanorods with Enhanced Antibacterial Activity Under Solar Light.” Chem. Eng. J., 428 9 (2022)

    Article  Google Scholar 

  64. Jermy, BR, Al-Jindan, RY, Ravinayagam, V, El-Badry, AA, “Anti-Blastocystosis Activity of Antioxidant Coated ZIF-8 Combined with Mesoporous Silicas MCM-41 and KIT-6.” Sci. Rep., 12 (1) 12 (2022)

    Article  Google Scholar 

  65. Lashgari, SM, Yari, H, Mahdavian, M, Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Synthesis of Graphene Oxide Nanosheets Decorated by Nanoporous Zeolite-Imidazole (ZIF-67) Based Metal-Organic Framework with Controlled-Release Corrosion Inhibitor Performance: Experimental and Detailed DFT-D Theoretical Explorations.” J. Hazard. Mater., 404 22 (2021)

    Article  Google Scholar 

  66. Lee, YR, Jang, MS, Cho, BY, Kwon, HJ, Kim, S, Ahn, WS, “ZIF-8: A Comparison of Synthesis Methods.” Chem. Eng. J., 271 276–280 (2015)

    Article  CAS  Google Scholar 

  67. Banerjee, R, Phan, A, Wang, B, Knobler, C, Furukawa, H, O’Keeffe, M, Yaghi, OM, “High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture.” Science, 319 (5865) 939–943 (2008)

    Article  CAS  Google Scholar 

  68. Liang, WB, Ricco, R, Maddigan, NK, Dickinson, RP, Xu, HS, Li, QW, Sumby, CJ, Bell, SG, Falcaro, P, Doonan, CJ, “Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites.” Chem. Mater., 30 (3) 1069–1077 (2018)

    Article  CAS  Google Scholar 

  69. Hoop, M, Walde, CF, Ricco, R, Mushtaq, F, Terzopoulou, A, Chen, XZ, deMello, AJ, Doonan, CJ, Falcaro, P, Nelson, BJ, Puigmarti-Luis, J, Pane, S, “Biocompatibility Characteristics of the Metal Organic Framework ZIF-8 for Therapeutical Applications.” Appl. Mater. Today, 11 13–21 (2018)

    Article  Google Scholar 

  70. Wee, LH, Janssens, N, Sree, SP, Wiktor, C, Gobechiya, E, Fischer, RA, Kirschhock, CEA, Martens, JA, “Local Transformation of ZIF-8 Powders and Coatings into ZnO Nanorods for Photocatalytic Application.” Nanoscale, 6 (4) 2056–2060 (2014)

    Article  CAS  Google Scholar 

  71. Miwornunyuie, N, Jingyu, H, Chen, L, Ke, L, Koomson, DA, Ewusi-Mensah, D, Opoku, PA, “Application of ZIF-8 Nanocomposite Membrane in Microbial Desalination Cells for Simultaneous Heavy Metal Removal and Biofouling Prevention.” Chemosphere, 306 135386 (2022)

    Article  CAS  Google Scholar 

  72. Wen, J, Yang, LS, “Transport of ZIF-8 in Porous Media Under the Influence of Surfactant Type and Nanoparticle Concentration.” Water Res., 218 12 (2022)

    Article  Google Scholar 

  73. Barbosa, P, Rosero-Navarro, NC, Shi, FN, Figueiredo, FML, “Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8.” Electrochim. Acta, 153 19–27 (2015)

    Article  CAS  Google Scholar 

  74. Abdel-Magied, AF, Abdelhamid, HN, Ashour, RM, Zou, XD, Forsberg, K, “Hierarchical Porous Zeolitic Imidazolate Frameworks Nanoparticles for Efficient Adsorption of Rare-Earth Elements.” Microporous Mesoporous Mater., 278 175–184 (2019)

    Article  CAS  Google Scholar 

  75. Ge, F, Yin, J, Liu, Y, Leng, W, Wang, X, Cui, Z, “Roles of pH in the NH4+-Induced Corrosion of AZ31 Magnesium Alloy in Chloride Environment.” J. Magnes. Alloy., 10 (11) 3167–3178 (2021)

    Article  Google Scholar 

  76. Li, DW, Ma, LJ, Zhang, B, Chen, SH, “Large-scale Fabrication of a Durable and Self-Healing Super-Hydrophobic Coating with High Thermal Stability and Long-Term Corrosion Resistance.” Nanoscale, 13 (16) 7810–7821 (2021)

    Article  CAS  Google Scholar 

  77. Cao, KY, Yu, ZX, Yin, D, “Preparation of Ce-MOF@TEOS to Enhance the Anti-Corrosion Properties of Epoxy Coatings.” Prog. Org. Coat., 135 613–621 (2019)

    Article  CAS  Google Scholar 

  78. Islam, MS, Sakairi, M, “Effects of Zn2+ Concentration on the Corrosion of Mild Steel in NaCl Aqueous Solutions.” J. Electrochem. Soc., 166 (2) C83–C90 (2019)

    Article  CAS  Google Scholar 

  79. Yin, D, Yu, ZX, Chen, LG, Cao, KY, “Enhancement of the Anti-Corrosion Performance of Composite Epoxy Coatings in Presence of BTA-loaded Copper-Based Metal-Organic Frameworks.” Int. J. Electrochem. Sci., 14 (5) 4240–4253 (2019)

    Article  CAS  Google Scholar 

  80. Ech-chihbi, E, Nahlé, A, Salim, R, Benhiba, F, Moussaif, A, El-Hajjaji, F, Oudda, H, Guenbour, A, Taleb, M, Warad, I, Zarrouk, A, “Computational, MD Simulation, SEM/EDX and Experimental Studies for Understanding Adsorption of Benzimidazole Derivatives as Corrosion Inhibitors in 1.0 M HCl Solution.” J. Alloys Compd., 844 155842 (2020)

    Article  CAS  Google Scholar 

  81. Zadeh, MK, Yeganeh, M, Shoushtari, MT, Esmaeilkhanian, A, “Corrosion Performance of Polypyrrole-Coated Metals: A Review of Perspectives and Recent Advances.” Synth. Metals, 274 15 (2021)

    Article  Google Scholar 

  82. Gupta, RK, Malviya, M, Verma, C, Gupta, NK, Quraishi, MA, “Pyridine-Based Functionalized Graphene Oxides as a New Class of Corrosion Inhibitors for Mild Steel: An Experimental and DFT Approach.” RSC Adv., 7 (62) 39063–39074 (2017)

    Article  CAS  Google Scholar 

  83. Gong, X, Wang, YJ, Kuang, TR, “ZIF-8-Based Membranes for Carbon Dioxide Capture and Separation.” ACS Sustain. Chem. Eng., 5 (12) 11204–11214 (2017)

    Article  CAS  Google Scholar 

  84. Yin, XX, Mu, P, Wang, QT, Li, J, “Superhydrophobic ZIF-8-Based Dual-Layer Coating for Enhanced Corrosion Protection of Mg Alloy.” ACS Appl. Mater. Interfaces, 12 (31) 35453–35463 (2020)

    Article  CAS  Google Scholar 

  85. Qing, YQ, Yang, CN, Yu, NN, Shang, Y, Sun, YZ, Wang, LS, Liu, CS, “Superhydrophobic TiO2/Polyvinylidene Fluoride Composite Surface with Reversible Wettability Switching and Corrosion Resistance.” Chem. Eng. J., 290 37–44 (2016)

    Article  CAS  Google Scholar 

  86. Zhao, L, Liu, Q, Gao, R, Wang, J, Yang, WL, Liu, LH, “One-Step Method for the Fabrication of Superhydrophobic Surface on Magnesium Alloy and its Corrosion Protection, Antifouling Performance.” Corros. Sci., 80 177–183 (2014)

    Article  CAS  Google Scholar 

  87. Wu, CQ, Liu, Q, Chen, RR, Liu, JY, Zhang, HS, Li, RM, Takahashi, K, Liu, PL, Wang, J, “Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance.” ACS Appl. Mater. Interfaces, 9 (12) 11106–11115 (2017)

    Article  CAS  Google Scholar 

  88. Chen, HY, Wang, FF, Fan, HZ, Hong, RY, Li, WH, “Construction of MOF-Based Superhydrophobic Composite Coating with Excellent Abrasion Resistance and Durability for Self-Cleaning, Corrosion Resistance, Anti-Icing, and Loading-Increasing Research.” Chem. Eng. J., 408 13 (2021)

    Article  Google Scholar 

  89. Ramezanzadeh, M, Ramezanzadeh, B, Mahdavian, M, Bahlakeh, G, “Development of Metal-Organic Framework (MOF) Decorated Graphene Oxide Nanoplatforms for Anti-Corrosion Epoxy Coatings.” Carbon, 161 231–251 (2020)

    Article  CAS  Google Scholar 

  90. Jiang, S, Li, W, Liu, J, Jiang, J, Zhang, Z, Shang, W, Peng, N and Wen, Y, "ZnO@ZIF-8 Core-Shell Structure Nanorods Superhydrophobic Coating on Magnesium Alloy with Corrosion Resistance and Self-Cleaning." J. Magnes. Alloy., (2022)

  91. Chen, Y, Zhu, Z, Jiang, X, Jiang, L, “Construction of Free-Standing MOF Sheets Through Electrochemical Printing on Superhydrophobic Substrates.” ACS Mater. Lett., 4 (4) 609–617 (2022)

    Article  Google Scholar 

  92. Zhang, WL, Wang, DH, Sun, ZN, Song, JN, Deng, X, “Robust Superhydrophobicity: Mechanisms and Strategies.” Chem. Soc. Rev., 50 (6) 4031–4061 (2021)

    Article  CAS  Google Scholar 

  93. Yuan, GQ, Ge, HC, Peng, C, Physical Chemistry. Advanced Education Press, Beijing (2008)

    Google Scholar 

  94. Zeng, XJ, Wang, L, Pi, PH, “Development and Research of Special Wettability Materials for Oil/Water Separation.” Prog. Chem., 30 73–86 (2018)

    CAS  Google Scholar 

  95. Chen, L, Zhou, C, Du, J, Zhou, W, Tan, L, Lichun, D, “Progress of Superhydrophobic Porous Materials.” CIESC J., 71 (10) 4502–4519 (2020)

    CAS  Google Scholar 

  96. Nguyen-Tri, P, Tran, HN, Plamondon, CO, Tuduri, L, Vo, D-VN, Nanda, S, Mishra, A, Chao, H-P, Bajpai, AK, “Recent Progress in the Preparation, Properties and Applications of Superhydrophobic Nano-Based Coatings and Surfaces: A Review.” Prog. Org. Coat., 132 235–256 (2019)

    Article  CAS  Google Scholar 

  97. Das, S, Kumar, S, Samal, SK, Mohanty, S, Nayak, SK, “A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications.” Ind. Eng. Chem. Res., 57 (8) 2727–2745 (2018)

    Article  CAS  Google Scholar 

  98. Young, T, “III. An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc., 95 65–87 (1805)

    Article  Google Scholar 

  99. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)

    Article  CAS  Google Scholar 

  100. Wenzel, RN, “Surface Roughness and Contact Angle.” J. Phys. Colloid Chem., 53 (9) 1466–1467 (1949)

    Article  CAS  Google Scholar 

  101. Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)

    Article  CAS  Google Scholar 

  102. Yang, C, Kaipa, U, Mather, QZ, Wang, X, Nesterov, V, Venero, AF, Omary, MA, “Fluorous Metal-Organic Frameworks with Superior Adsorption and Hydrophobic Properties Toward Oil Spill Cleanup and Hydrocarbon Storage.” J. Am. Chem. Soc., 133 (45) 18094–18097 (2011)

    Article  CAS  Google Scholar 

  103. Padial, NM, Quartapelle Procopio, E, Montoro, C, López, E, Oltra, JE, Colombo, V, Maspero, A, Masciocchi, N, Galli, S, Senkovska, I, Kaskel, S, Barea, E, Navarro, JAR, “Highly Hydrophobic Isoreticular Porous Metal-Organic Frameworks for the Capture of Harmful Volatile Organic Compounds.” Angew. Chem. Int. Ed., 52 (32) 8290–8294 (2013)

    Article  CAS  Google Scholar 

  104. Chen, T-H, Popov, I, Zenasni, O, Daugulis, O, Miljanić, OŠ, “Superhydrophobic Perfluorinated Metal-Organic Frameworks.” Chem. Commun., 49 (61) 6846–6848 (2013)

    Article  CAS  Google Scholar 

  105. Roy, S, Suresh, VM, Maji, TK, “Self-Cleaning MOF: Realization of Extreme Water Repellence in Coordination Driven Self-Assembled Nanostructures.” Chem. Sci., 7 (3) 2251–2256 (2016)

    Article  CAS  Google Scholar 

  106. Zhang, M, Guo, B, Feng, Y, Xie, C, Han, X, Kong, X, Xu, B, Zhang, L, “Amphipathic Pentiptycene-Based Water-Resistant Cu-MOF for Efficient Oil/Water Separation.” Inorg. Chem., 58 (9) 5384–5387 (2019)

    Article  CAS  Google Scholar 

  107. Chen, L, Zhou, C, Du, J, Zhou, W, Tan, L, Dong, L, “Progress of Superhydrophobic Porous Materials.” Huagong Xuebao/CIESC J., 71 (10) 4502–4519 (2020)

    CAS  Google Scholar 

  108. Milionis, A, Bayer, IS, Loth, E, “Recent Advances in Oil-Repellent Surfaces.” Int. Mater. Rev., 61 (2) 101–126 (2016)

    Article  CAS  Google Scholar 

  109. Jin, ZP, Mei, H, Pan, LK, Liu, HX, Cheng, LF, “Superhydrophobic Self-Cleaning Hierarchical Micro-/Nanocomposite Coating with High Corrosion Resistance and Durability.” ACS Sustain. Chem. Eng., 9 (11) 4111–4121 (2021)

    Article  CAS  Google Scholar 

  110. Wang, CY, Wang, JH, Hu, WB, “Preparation and Corrosion Resistance of ZnO@ZIF-8-SA Film on Carbon Steel Surface.” Colloids Surf. Physicochem. Eng. Asp., 647 18 (2022)

    Article  Google Scholar 

  111. Wang, W, Song, MS, Yang, XN, Zhao, J, Cole, IS, Chen, XB, Fan, Y, “Synergistic Coating Strategy Combining Photodynamic Therapy and Fluoride-Free Superhydrophobicity for Eradicating Bacterial Adhesion and Reinforcing Corrosion Protection.” ACS Appl. Mater. Interfaces, 12 (41) 46862–46873 (2020)

    Article  CAS  Google Scholar 

  112. Yang, HM, Liu, X, Wang, JH, Hu, WB, “Preparation and Corrosion Resistance of ZIF-8-(5, 6-dimethylbenzimidazole)/LDHs Composite Film on Magnesium Alloy.” Int. J. Electrochem. Sci., 15 (12) 12203–12219 (2020)

    Article  CAS  Google Scholar 

  113. Cao, JJ, Guo, CB, Guo, XP, Chen, ZY, “Inhibition Behavior of Synthesized ZIF-8 Derivative for Copper in Sodium Chloride Solution.” J. Mol. Liq., 311 10 (2020)

    Article  Google Scholar 

  114. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA, “Electric Field Effect in Atomically Thin Carbon Films.” Science, 306 (5696) 666–669 (2004)

    Article  CAS  Google Scholar 

  115. Meyer, JC, Geim, AK, Katsnelson, MI, Novoselov, KS, Booth, TJ, Roth, S, “The Structure of Suspended Graphene Sheets.” Nature, 446 (7131) 60–63 (2007)

    Article  CAS  Google Scholar 

  116. Agarwal, V, Zetterlund, PB, “Strategies for Reduction of Graphene Oxide – A Comprehensive Review.” Chem. Eng. J., 405 127018 (2021)

    Article  CAS  Google Scholar 

  117. Chen, L, Weng, M, Zhou, P, Huang, F, Liu, C, Fan, S, Zhang, W, “Graphene-Based Actuator with Integrated-Sensing Function.” Adv. Funct. Mater., 29 (5) 1806057 (2019)

    Article  Google Scholar 

  118. Ma, Q, Lui, CH, Song, JCW, Lin, Y, Kong, JF, Cao, Y, Dinh, TH, Nair, NL, Fang, W, Watanabe, K, Taniguchi, T, Xu, S-Y, Kong, J, Palacios, T, Gedik, N, Gabor, NM, Jarillo-Herrero, P, “Giant Intrinsic Photoresponse in Pristine Graphene.” Nat. Nanotechnol., 14 (2) 145–150 (2019)

    Article  CAS  Google Scholar 

  119. Yang, Y, Asiri, AM, Tang, Z, Du, D, Lin, Y, “Graphene Based Materials for Biomedical Applications.” Mater. Today, 16 (10) 365–373 (2013)

    Article  CAS  Google Scholar 

  120. Zhu, Y, Murali, S, Cai, W, Li, X, Suk, JW, Potts, JR, Ruoff, RS, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Adv. Mater., 22 (35) 3906–3924 (2010)

    Article  CAS  Google Scholar 

  121. Fadil, Y, Dinh, LNM, Yap, MOY, Kuchel, RP, Yao, Y, Omura, T, Aregueta-Robles, UA, Song, N, Huang, S, Jasinski, F, Thickett, SC, Minami, H, Agarwal, V, Zetterlund, PB, “Ambient-Temperature Waterborne Polymer/rGO Nanocomposite Films: Effect of rGO Distribution on Electrical Conductivity.” ACS Appl. Mater. Interfaces, 11 (51) 48450–48458 (2019)

    Article  CAS  Google Scholar 

  122. Cai, Y, Fadil, Y, Jasinski, F, Thickett, SC, Agarwal, V, Zetterlund, PB, “Miniemulsion Polymerization Using Graphene Oxide as Surfactant. In Situ Grafting of Polymers.” Carbon, 149 445–451 (2019)

    Article  CAS  Google Scholar 

  123. Chen, C, He, Y, Xiao, G, Zhong, F, Li, H, Wu, Y, Chen, J, “Synergistic Effect of Graphene Oxide@Phosphate-Intercalated Hydrotalcite for Improved Anti-Corrosion and Self-Healable Protection of Waterborne Epoxy Coating in Salt Environments.” J. Mater. Chem. C, 7 (8) 2318–2326 (2019)

    Article  CAS  Google Scholar 

  124. Liu, C, Du, P, Zhao, H, Wang, L, “Synthesis of l-Histidine-Attached Graphene Nanomaterials and Their Application for Steel Protection.” ACS Appl. Nano Mater., 1 (3) 1385–1395 (2018)

    Article  CAS  Google Scholar 

  125. Li, X, Bandyopadhyay, P, Guo, M, Kim, NH, Lee, JH, “Enhanced Gas Barrier and Anticorrosion Performance of Boric Acid Induced Cross-Linked Poly(vinyl Alcohol-co-Ethylene)/Graphene Oxide Film.” Carbon, 133 150–161 (2018)

    Article  CAS  Google Scholar 

  126. Lu, H, Zhang, S, Li, W, Cui, Y, Yang, T, “Synthesis of Graphene Oxide-Based Sulfonated Oligoanilines Coatings for Synergistically Enhanced Corrosion Protection in 3.5% NaCl Solution.” ACS Appl. Mater. Interfaces, 9 (4) 4034–4043 (2017)

    Article  CAS  Google Scholar 

  127. Hwang, M-J, Kim, M-G, Kim, S, Kim, YC, Seo, HW, Cho, JK, Park, I-K, Suhr, J, Moon, H, Koo, JC, Choi, HR, Kim, KJ, Tak, Y, Nam, J-D, “Cathodic Electrophoretic Deposition (EPD) of Phenylenediamine-Modified Graphene Oxide (GO) for Anti-Corrosion Protection of Metal Surfaces.” Carbon, 142 68–77 (2019)

    Article  CAS  Google Scholar 

  128. Chu, JH, Tong, LB, Wen, M, Jiang, ZH, Wang, KS, Zhang, HJ, “Graphene Oxide Film as a Protective Barrier for Mg Alloy: Worse or Better is Dependent on a Chemical Reduction Process.” Carbon, 145 389–400 (2019)

    Article  CAS  Google Scholar 

  129. Samiee, R, Ramezanzadeh, B, Mahdavian, M, Alibakhshi, E, Bahlakeh, G, “Designing a Non-hazardous Nano-carrier Based on Graphene Oxide@Polyaniline-Praseodymium (III) for Fabrication of the Active/Passive Anti-Corrosion Coating.” J. Hazard. Mater., 398 123136 (2020)

    Article  CAS  Google Scholar 

  130. Munir, K, Wen, C, Li, Y, “Graphene Nanoplatelets-Reinforced Magnesium Metal Matrix Nanocomposites with Superior Mechanical and Corrosion Performance For Biomedical Applications.” J. Magnes. Alloy., 8 (1) 269–290 (2020)

    Article  CAS  Google Scholar 

  131. Moradi, M, Rezaei, M, “Construction of Highly Anti-Corrosion and Super-Hydrophobic Polypropylene/Graphene Oxide Nanocomposite Coatings on Carbon Steel: Experimental, Electrochemical and Molecular Dynamics Studies.” Construct. Build. Mater., 317 126136 (2022)

    Article  CAS  Google Scholar 

  132. Li, B, Yin, X, Xue, S, Mu, P, Li, J, “Facile Fabrication of Graphene Oxide and MOF-Based Superhydrophobic Dual-Layer Coatings for Enhanced Corrosion Protection on Magnesium Alloy.” Appl. Surf. Sci., 580 152305 (2022)

    Article  CAS  Google Scholar 

  133. Jayaramulu, K, Datta, KKR, Rösler, C, Petr, M, Otyepka, M, Zboril, R, Fischer, RA, “Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation.” Angew. Chem. Int. Ed., 55 (3) 1178–1182 (2016)

    Article  CAS  Google Scholar 

  134. Wang, S, Urban, MW, “Self-healing Polymers.” Nat. Rev. Mater., 5 (8) 562–583 (2020)

    Article  CAS  Google Scholar 

  135. Khan, A, Sliem, MH, Arif, A, Salih, MA, Shakoor, RA, Montemor, MF, Kahraman, R, Mansour, S, Abdullah, AM, Hasan, A, “Designing and Performance Evaluation of Polyelectrolyte Multilayered Composite Smart Coatings.” Prog. Org. Coat., 137 105319 (2019)

    Article  CAS  Google Scholar 

  136. Bakhtaoui, N, Benali, O, Mazarío, E, Recio, FJ, Herrasti, P, “Layered Double Hydroxides Intercalated with Methyl Orange as a Controlled-Release Corrosion Inhibitor for Iron in Chloride Media.” Nano Express, 2 (1) 010017 (2021)

    Article  Google Scholar 

  137. Wang, T, Du, J, Ye, S, Tan, L, Fu, J, “Triple-Stimuli-Responsive Smart Nanocontainers Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy.” ACS Appl. Mater. Interfaces, 11 (4) 4425–4438 (2019)

    Article  CAS  Google Scholar 

  138. Liu, CB, Zhao, HC, Hou, PM, Qian, B, Wang, X, Guo, CY, Wang, LP, “Efficient Graphene/Cyclodextrin-Based Nanocontainer: Synthesis and Host-Guest Inclusion for Self-Healing Anticorrosion Application.” ACS Appl. Mater. Interfaces, 10 (42) 36229–36239 (2018)

    Article  CAS  Google Scholar 

  139. Adsul, SH, Bagale, UD, Sonawane, SH, Subasri, R, “Release Rate Kinetics of Corrosion Inhibitor Loaded Halloysite Nanotube-based Anticorrosion Coatings on Magnesium Alloy AZ91D.” J. Magnes. Alloy., 9 (1) 202–215 (2021)

    Article  CAS  Google Scholar 

  140. Wu, Y, Jiang, F, Qiang, Y, Zhao, W, “Synthesizing a Novel Fluorinated Reduced Graphene Oxide-CeO2 Hybrid Nanofiller to Achieve Highly Corrosion Protection for Waterborne Epoxy Coatings.” Carbon, 176 39–51 (2021)

    Article  CAS  Google Scholar 

  141. Kordas, G, “Nanocontainers (CeO2): Synthesis, Characterization, Properties, and Anti-corrosive Application.” In: Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications, pp. 177–185. American Chemical Society, (2021)

  142. Kim, C, Karayan, AI, Milla, J, Hassan, M, Castaneda, H, “Smart Coating Embedded with pH-Responsive Nanocapsules Containing a Corrosion Inhibiting Agent.” ACS Appl. Mater. Interfaces, 12 (5) 6451–6459 (2020)

    Article  CAS  Google Scholar 

  143. Trojanowska, A, Bandeira, NAG, Nogalska, A, Marturano, V, Giamberini, M, Cerruti, P, Ambrogi, V, Tylkowski, B, “Squeezing Release Mechanism of Encapsulated Compounds from Photo-Sensitive Microcapsules.” Appl. Surf. Sci., 472 143–149 (2019)

    Article  CAS  Google Scholar 

  144. Cheng, L, Liu, CB, Wu, H, Zhao, HC, Wang, LP, “Interfacial Assembled Mesoporous Polydopamine Nanoparticles Reduced Graphene Oxide for High Performance of Waterborne Epoxy-based Anticorrosive Coatings.” J. Colloid Interface Sci., 606 1572–1585 (2022)

    Article  CAS  Google Scholar 

  145. Bao, Y, Wei, Y, Fu, R, “ZnPA@ZIF-8 Nanoparticles: Synthesis, Sustained Release Properties and Anticorrosion Performance.” Colloids Surf. A Physicochem. Eng. Asp., 651 129776 (2022)

    Article  CAS  Google Scholar 

  146. Li, WJ, Ren, BH, Chen, YN, Wang, XS, Cao, R, “Excellent Efficacy of MOF Films for Bronze Artwork Conservation: The Key Role of HKUST-1 Film Nanocontainers in Selectively Positioning and Protecting Inhibitors.” ACS Appl. Mater. Interfaces, 10 (43) 37529–37534 (2018)

    Article  CAS  Google Scholar 

  147. Zhou, CL, Li, Z, Li, J, Yuan, TC, Chen, B, Ma, XZ, Jiang, D, Luo, XH, Chen, DC, Liu, YL, “Epoxy Composite Coating with Excellent Anticorrosion and Self-Healing Performances Based on Multifunctional Zeolitic Imidazolate Framework Derived Nanocontainers.” Chem. Eng. J., 385 17 (2020)

    Article  Google Scholar 

  148. Zhou, CL, Zhang, HJ, Pan, XY, Li, J, Chen, B, Gong, WJ, Yang, Q, Luo, XH, Zeng, HB, Liu, YL, “Smart Waterborne Composite Coating with Passive/Active Protective Performances Using Nanocontainers Based on Metal Organic Frameworks Derived Layered Double Hydroxides.” J. Colloid Interface Sci., 619 132–147 (2022)

    Article  CAS  Google Scholar 

  149. Wu, L, Chen, Y, Dai, X, Yao, W, Wu, J, Xie, Z, Jiang, B, Yuan, Y, Pan, F, “Corrosion Resistance of the GO/ZIF-8 Hybrid Loading Benzotriazole as a Multifunctional Composite Filler-Modified MgAlY Layered Double Hydroxide Coating.” Langmuir, 38 (33) 10338–10350 (2022)

    Article  CAS  Google Scholar 

  150. Xiao, S, Cao, XK, Dong, ZH, Ma, XZ, Zhang, XX, Cai, GY, “A pH-Responsive Cerium-Imidazole Decorated ZIF-8 to Achieve Self-Healing Barrier Property for Epoxy Coating on Al Alloy by Controlled Release.” Prog. Org. Coat., 163 12 (2022)

    Google Scholar 

  151. Cao, LL, Jones, AK, Sikka, VK, Wu, JZ, Gao, D, “Anti-Icing Superhydrophobic Coatings.” Langmuir, 25 (21) 12444–12448 (2009)

    Article  CAS  Google Scholar 

  152. Kohsari, I, Shariatinia, Z, Pourmortazavi, SM, “Antibacterial Electrospun Chitosan-Polyethylene Oxide Nanocomposite Mats Containing ZIF-8 Nanoparticles.” Int. J. Biol. Macromol., 91 778–788 (2016)

    Article  CAS  Google Scholar 

  153. Zou, F, Jiang, J, Lv, F, Xia, X, Ma, X, “Preparation of Antibacterial and Osteoconductive 3D-Printed PLGA/Cu(I)@ZIF-8 Nanocomposite Scaffolds for Infected Bone Repair.” J. Nanobiotechnol., 18 (1) 39 (2020)

    Article  CAS  Google Scholar 

  154. Taheri, M, Ashok, D, Sen, T, Enge, TG, Verma, NK, Tricoli, A, Lowe, A, Nisbet, D, Tsuzuki, T, “Stability of ZIF-8 Nanopowders in Bacterial Culture Media and Its Implication for Antibacterial Properties.” Chem. Eng. J., 413 127511 (2021)

    Article  CAS  Google Scholar 

  155. Gaaseidnes, K, Turbeville, J, “Separation of Oil and Water in Oil Spill Recovery Operations.” Pure Appl. Chem., 71 (1) 95–101 (1999)

    Article  CAS  Google Scholar 

  156. Gupta, RK, Dunderdale, GJ, England, MW, Hozumi, A, “Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions.” J. Mater. Chem. A, 5 (31) 16025–16058 (2017)

    Article  CAS  Google Scholar 

  157. Sann, EE, Pan, Y, Gao, Z, Zhan, S, Xia, F, “Highly Hydrophobic ZIF-8 Particles and Application for Oil-Water Separation.” Sep. Purif. Technol., 206 186–191 (2018)

    Article  CAS  Google Scholar 

  158. Li, H, Mu, P, Li, J, Wang, Q, “Inverse Desert Beetle-like ZIF-8/PAN Composite Nanofibrous Membrane for Highly Efficient Separation of Oil-in-Water Emulsions.” J. Mater. Chem. A, 9 (7) 4167–4175 (2021)

    Article  CAS  Google Scholar 

  159. Wang, L, Guan, Y, Qiu, X, Zhu, H, Pan, S, Yu, M, Zhang, Q, “Efficient Ferrite/Co/Porous Carbon Microwave Absorbing Material Based on Ferrite@Metal–Organic Framework.” Chem. Eng. J., 326 945–955 (2017)

    Article  CAS  Google Scholar 

  160. Zhong, GH, Liu, DX, Zhang, JY, “The Application of ZIF-67 and its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts.” J. Mater. Chem. A, 6 (5) 1887–1899 (2018)

    Article  CAS  Google Scholar 

  161. Hussain, MM, Majeed, MK, Ma, HT, Wang, YP, Saleem, A, Lotfi, M, “PTFE/EP Reinforced MOF/SiO2 Composite as a Superior Mechanically Robust Superhydrophobic Agent Towards Corrosion Protection, Self-Cleaning and Anti-Icing.” Chem. Eur. J., 28 (2) 13 (2022)

    Article  Google Scholar 

  162. Lashgari, SM, Yari, H, Mahdavian, M, Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Application of Nanoporous Cobalt-based ZIF-67 Metal-Organic Framework (MOF) for Construction of an Epoxy-Composite Coating with Superior Anti-corrosion Properties.” Corros. Sci., 178 12 (2021)

    Article  Google Scholar 

  163. Lashgari, SM, Yari, H, Mahdavian, M, Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Unique 2-Methylimidazole Based Inorganic Building Brick Nano-particles (NPs) Functionalized with 3-Aminopropyltriethoxysilane with Excellent Controlled Corrosion Inhibitors Delivery Performance; Experimental Coupled with Molecular/DFT-D Simulations.” J. Taiwan Inst. Chem. Eng., 117 209–222 (2020)

    Article  CAS  Google Scholar 

  164. Li, YS, Liang, FY, Bux, HG, Yang, WS, Caro, J, “Zeolitic Imidazolate Framework ZIF-7 Based Molecular Sieve Membrane for Hydrogen Separation.” J. Membr. Sci., 354 (1–2) 48–54 (2010)

    Article  CAS  Google Scholar 

  165. Huang, X-C, Zhang, J, Chen, X-M, “[Zn(bim)2] (H2O) 1.67: A Metal-Organic Open-Framework with Sodalite Topology.” Chin. Sci. Bull., 48 1531–1534 (2003)

    CAS  Google Scholar 

  166. Zhao, Y, Xu, T, Zhou, JH, Hu, JM, “Superhydrophobic Nanocontainers for Passive and Active Corrosion Protection.” Chem. Eng. J., 433 12 (2022)

    Article  Google Scholar 

  167. Zhang, Y, Wu, C, Zhu, HM, Zhang, BQ, “Facial Fabrication of Superhydrophobic ZIF-7 Coatings with Fast Self-Healing Ability for Ultra-Efficient Emulsion Separation.” Sep. Purif. Technol., 276 9 (2021)

    Article  Google Scholar 

  168. Huang, AS, Caro, J, “Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity.” Angew. Chem. Int. Ed., 50 (21) 4979–4982 (2011)

    Article  CAS  Google Scholar 

  169. Yang, TX, Chung, TS, “Room-Temperature Synthesis of ZIF-90 Nanocrystals and the Derived Nano-composite Membranes for Hydrogen Separation.” J. Mater. Chem. A, 1 (19) 6081–6090 (2013)

    Article  CAS  Google Scholar 

  170. Morris, W, Doonan, CJ, Furukawa, H, Banerjee, R, Yaghi, OM, “Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks.” J. Am. Chem. Soc., 130 (38) 12626 (2008)

    Article  CAS  Google Scholar 

  171. Zhang, XJ, Zhang, Y, Wang, YL, Gao, D, Zhao, HX, “Preparation and Corrosion Resistance of Hydrophobic Zeolitic Imidazolate Framework (ZIF-90) Film @Zn-Al Alloy in NaCl Solution.” Prog. Org. Coat., 115 94–99 (2018)

    Article  CAS  Google Scholar 

  172. Cai, YH, Chen, DY, Li, NJ, Xu, QF, Li, H, He, JH, Lu, JM, “Superhydrophobic Metal-Organic Framework Membrane with Self-Repairing for High-Efficiency Oil/Water Emulsion Separation.” ACS Sustain. Chem. Eng., 7 (2) 2709–2717 (2019)

    Article  CAS  Google Scholar 

  173. Rahmani, MH, Dehghani, A, Bahlakeh, G, Ramezanzadeh, B, “Introducing GO-based 2D-Platform Modified via Phytic Acid Molecules Decorated by Zeolite Imidazole ZIF-9 MOFs for Designing Multi-Functional Polymeric Anticorrosive System; DFT-D Computations and Experimental Studies.” J. Mol. Liq., 364 119945 (2022)

    Article  CAS  Google Scholar 

  174. Wang, J, Yu, S, Yin, X, Wang, L, Zhu, G, Wang, K, Li, Q, Li, J, Yang, X, “Fabrication of Cross-Like ZIF-L Structures with Water Repellency and Self-Cleaning Property via a Simple In-Situ Growth Strategy.” Colloids Surf. A Physicochem. Eng. Asp., 623 126731 (2021)

    Article  CAS  Google Scholar 

  175. Zeng, X, Zhou, W, Zhou, P, Zhang, M, Zhou, C, Tan, L, Wang, L, “ZIF-L(Co) Coated Stainless Steel Meshes with Superwettability for Efficient Multiphase Liquid Separation.” J. Environ. Chem. Eng., 9 (4) 105325 (2021)

    Article  CAS  Google Scholar 

  176. Wang, B, Cote, AP, Furukawa, H, O’Keeffe, M, Yaghi, OM, “Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs.” Nature, 453 (7192) 207-U6 (2008)

    Article  CAS  Google Scholar 

  177. Banerjee, R, Furukawa, H, Britt, D, Knobler, C, O’Keeffe, M, Yaghi, OM, “Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties.” J. Am. Chem. Soc., 131 (11) 3875–3877 (2009)

    Article  CAS  Google Scholar 

  178. Chen, RZ, Yao, JF, Gu, QF, Smeets, S, Baerlocher, C, Gu, HX, Zhu, DR, Morris, W, Yaghi, OM, Wang, HT, “A Two-Dimensional Zeolitic Imidazolate Framework with a Cushion-Shaped Cavity for CO2 Adsorption.” Chem. Commun., 49 (82) 9500–9502 (2013)

    Article  CAS  Google Scholar 

  179. Esken, D, Turner, S, Lebedev, OI, Van Tendeloo, G, Fischer, RA, “Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters Inside Functionalized Zeolite Imidazolate Frameworks, ZIFs.” Chem. Mater., 22 (23) 6393–6401 (2010)

    Article  CAS  Google Scholar 

  180. Llabrés i Xamena, FX, Casanova, O, Galiasso Tailleur, R, Garcia, H, Corma, A, “Metal Organic Frameworks (MOFs) as Catalysts: A Combination of Cu2+ and Co2+ MOFs as an Efficient Catalyst for Tetralin Oxidation.” J. Catal., 255 (2) 220–227 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51665037) and Jiangxi Postgraduate Innovation Special Fund Project (YC2022-s142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Xiao, L., Xiong, G. et al. Recent progress of zeolitic imidazolate frameworks (ZIFs) in superhydrophobic and anticorrosive coatings for metals and their alloys. J Coat Technol Res 20, 1157–1177 (2023). https://doi.org/10.1007/s11998-023-00769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00769-4

Keywords

Navigation