Skip to main content
Log in

Coating process for antimicrobial textile surfaces derived from a polyester dyeing process

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The presented study introduces an approach for coating to realize antimicrobial textile surfaces without the use of nanoscaled metal particles. Bactericidal metal ions were used instead of elementary metal particles and stored in alginates, which were fixed on the textile substrate by a coating application. A newly developed coating process for fixation was conducted which was derived from a polyester dyeing process leading to a significantly higher antimicrobial activity than the application of a common sol–gel coating. For this purpose, a specific coating agent was developed. Antimicrobial testing was done by a viability assay against Escherichia coli and Staphylococcus aureus. The promising results in antibacterial activity could probably in the future lead to useful coating applications for textiles as well as for other polymeric substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cavanagh, P, Lipsky, B, Bradbury, A, Botek, G, “Treatment for Diabetic Foot Ulcers.” Lancet, 366 1725–1735 (2005)

    Article  Google Scholar 

  2. Bader, M, “Diabetic Foot Infection.” Am. Family Physician, 78 71–79 (2008)

    Google Scholar 

  3. Kim, Y, Sun, G, “Durable Antimicrobial Finishing of Nylon Fabrics with Acid Dyes and a Quaternary Ammonium Salt.” Text. Res. J., 4 (71) 318–323 (2001)

    Article  Google Scholar 

  4. Payne, JD, “Antimicrobial Treatment of Textile Materials.” US Patent US5700742 A, 1997

  5. Alimohammadi, F, Gashti, MP, Shamei, AL, “A Novel Method for Coating of Carbon Nanotube on Cellulose Fiber Using 1,2,3,4-Butanetetracarboxylic Acid as a Cross-Linking Agent.” Prog. Org. Coat., 74 470–478 (2012)

    Article  Google Scholar 

  6. Schiffmann, JD, Elimelech, M, “Antibacterial Activity of Electrospun Polymer Mats with Incorporated Narrow Diameter Single-Walled Carbon Nanotubes.” ACS Appl. Mater. Interfaces, 3 (2) 462–468 (2011)

    Article  Google Scholar 

  7. Ahamed, M, Al Salhi, M, Siddiquib, M, “Silver Nanoparticle Applications and Human Health.” Clin. Chim. Acta, 411 (24) 1841–1848 (2010)

    Article  Google Scholar 

  8. Quadros, M, Marr, L, “Environmental and Human Health Risks of Aerosolized Silver Nanoparticles.” J. Air Waste Manage. Assoc., 60 (7) 770–781 (2010)

    Article  Google Scholar 

  9. Larese, F, D’Agostin, F, Crodera, M, Adami, G, Renzi, N, Bovenzi, M, Maina, G, “Human Skin Penetration of Silver Nanoparticles Through Intact and Damaged Skin.” Toxicology, 255 33–37 (2009)

    Article  Google Scholar 

  10. von Nägeli, CW, Schwendener, S, Cramer, S, Über oligodynamische Erscheinungen in lebenden Zellen. Allgemeine schweizerische Gesellschaft für die Gesamten Naturwissenschaften, Neuchatel, 1893

    Google Scholar 

  11. Semeykina, AL, Skulachev, VP, “Submicromolar Ag(+) Increases Passive Na(+) Permeabilty and Inhibits the Respiration-Supported Formation of Na(+) Gradient in Bacillus FTU Vesicles.” FEBS Lett., 269 (1) 69–72 (1990)

    Article  Google Scholar 

  12. Shrestha, R, Joshi, DR, Gopali, J, Piya, S, “Oligodynamic Action of Silver, Copper and Brass on Enteric Bacteria Isolated from Water of Kathmandu Valley.” Nepal J. Sci. Technol., 10 189–193 (2009)

    Google Scholar 

  13. Borkow, G, Gabbay, J, “Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections.” Curr. Chem. Biol., 8 272–278 (2009)

    Google Scholar 

  14. Grass, G, Rensing, C, Solioz, M, “Metallic Copper as an Antimicrobial Surface.” Appl. Environ. Microbiol., 77 (5) 1541–1547 (2011)

    Article  Google Scholar 

  15. Nan, L, Liu, Y, Lü, M, “Study on Antimicrobial Mechanism of Copper-Bearing Austenitic Antibacterial Stainless Steel by Atomic Force Microscopy.” J. Mater. Sci. Mater. Med., 19 3057–3062 (2008)

    Article  Google Scholar 

  16. Macomber, L, Imlay, J, “The Iron-Sulfur Clusters of Dehydratases are Primary Intracellular Targets of Copper Toxicity.” Proc. Natl. Acad. Sci. USA, 106 (20) 8344–8349 (2009)

    Article  Google Scholar 

  17. Xie, Y, He, Y, Irwin, PL, Jin, T, Shi, X, “Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni.” Appl. Environ. Microbiol., 77 (7) 2325–2331 (2011)

    Article  Google Scholar 

  18. Raghupathi, K, Koodali, R, Manna, A, “Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles.” Langmuir, 17 4020–4028 (2011)

    Article  Google Scholar 

  19. Cha, K, Hong, HW, Choi, YG, Lee, M, Park, J, Chae, HK, Ryu, G, Myung, H, “Comparison of Acute Responses of Mice Livers Short-Term Exposure to Nano-sized or Micro-sized Silver Particles.” Biotechnol. Lett., 30 1893–1899 (2008)

    Article  Google Scholar 

  20. Panyala, N, Pena-Mendez, E, Havel, J, “Silver or Silver Nanoparticles: A Hazardous Threat to the Environment and Human Health?” J. Appl. Biomed., 6 117–129 (2008)

    Google Scholar 

  21. Yalcin, E, Cavusoglu, K, Maras, M, Biyikoglu, M, “Biosorption of Lead and Copper Metal Ions on Chladophora glomerata Algae: Effect of Algal Surface Modification.” Acta Chim. Slov., 55 228–232 (2008)

    Google Scholar 

  22. Davis, T, Voleksy, B, Mucci, A, “A Review of the Biochemistry of Heavy Metal Biosorption in Brown Algae.” Water Res., 37 4311–4330 (2003)

    Article  Google Scholar 

  23. Monteiro, C, Castro, P, Malcata, F, “Biosorption of Zinc Ions from Aequeous Solution by the Microalga Scenedesmus obliquus.” Environ. Chem. Lett., 9 169–176 (2011)

    Article  Google Scholar 

  24. Mehta, S, Gaur, JP, “Use of Algae for Removing Heavy Metal Ions From Wastewater: Progress and Prospects.” Crit. Rev. Biotechnol., 25 113–152 (2005)

    Article  Google Scholar 

  25. Rees, D, “Polysaccharide Shapes and Their Interactions—Some Recent Advances.” Pure Appl. Chem., 53 1–14 (1981)

    Article  Google Scholar 

  26. Aliste, A, Vieira, F, Del Mastro, N, “Radiation Effects on Agar, Alginates and Carrageenan to be Used as Food Additives.” Radiat. Phys. Chem., 57 (3–6) 305–308 (2000)

    Article  Google Scholar 

  27. Mahltig, B, Textor, T, Nanosols and Textiles. World Scientific Publishing Co., Pte. Ltd., Singapore, 2008

    Book  Google Scholar 

  28. Rouette, HK, “H—Polyester Dyeing.” In: Encyclopedia of Textile Finishing, pp 51–52. Springer, Berlin, 2000

  29. Gilbert, A, Precopio, F, “Peroxide Cured Polyethylene.” US Patent US 3079370 A, 1963

  30. Grethe, T, Schulenberg, D, Bidu, J, Haase, H, Mahltig, B, Textor, T, Gutmann, J, “Antimicrobial Finishing of Textiles by Complexated Metal-Ions.” Proceedings of the 7th Aachen-Dresden International Textile Conference, 2013

  31. Filipinov, M, Kohn, R, “Determination of Composition of Alginates by Infrared Spectroscopic Method.” Chemické Zvesti, 28 (6) 817–819 (1974)

    Google Scholar 

  32. Mahltig, B, Gutmann, E, Meyer, D, Reibold, M, Bund, A, Böttcher, H, “Thermal Preparation and Stabilization of Crystalline Silver Particles in SiO2-Based Coating Solutions.” J. Sol Gel. Sci. Technol., 49 (2) 202–208 (2009)

    Article  Google Scholar 

  33. Mata, Y, Blázquez, M, Ballester, A, Gonzalez, F, Munoz, J, “Biosorption of Cadmium, Lead and Copper with Calcium Alginate Xerogels and Immobilized Fucus vesiculosus.” J. Hazard. Mater., 163 555–562 (2009)

    Article  Google Scholar 

  34. Deacon, G, Phillips, R, “Relationships Between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination.” Coord. Chem. Rev., 33 227–250 (1980)

    Article  Google Scholar 

  35. Papageorgiou, SK, Kouvelos, E, Fawas, E, Sapalidis, A, Romanos, G, Katsaros, F, “Metal–Carboxylate Interactions in Metal-Alginate Complexes Studied with FTIR Pectroscopy.” Carbohydr. Res., 345 469–473 (2010)

    Article  Google Scholar 

  36. Mahltig, B, Reibold, M, Gutmann, E, Textor, T, Gutmann, J, Haufe, H, Haase, H, “Preparation of Silver Nanoparticles Suitable for Textile Finishing Processes to Produce Textiles with Strong Antibacterial Properties Against Different Bacteria Types.” Zeitschrift für Naturforschung B, 66B 905–919 (2011)

    Article  Google Scholar 

  37. Mahltig, B, Fiedler, D, Böttcher, H, “Antimicrobial Sol-Gel Coatings.” J. Sol Gel. Sci. Technol., 32 219–222 (2004)

    Article  Google Scholar 

  38. Mahltig, B, Haase, H, “Comparison of the Effectiveness of Different Silver-Containing Textile Products on Bacteria and Human Cells.” J. Text. Inst., 103 (11) 1262–1266 (2012)

    Article  Google Scholar 

  39. Schneider, G, “Kleinstes Silber im Blick.” Nachr. Chem., 5 552–553 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The IGF-Project 16876N of the research association Forschungskuratorium Textile. V., Reinhardtstraße 12-14, 10117 Berlin is supported by the AiF within the scope of the support program of the “Industrielle Gemeinschaftsforschung und -entwicklung (IGF)” by the Ministry of Economics and Technology due to a decision of the German Bundestag. The funding of the SEM/EDS-Equipment by the program “FH-Basis” of the state of North Rhine-Westphalia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grethe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grethe, T., Haase, H., Natarajan, H. et al. Coating process for antimicrobial textile surfaces derived from a polyester dyeing process. J Coat Technol Res 12, 1133–1141 (2015). https://doi.org/10.1007/s11998-015-9709-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9709-9

Keywords

Navigation