Skip to main content
Log in

Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Active and intelligent packaging can effectively improve the shelf life and monitor food quality in real-time packaged products without affecting nutritional value. With the growing interest in human health and well-being, active packaging integrated with natural functional ingredients has great potential in improving and maintaining food safety and quality and promoting marketability. Saffron has emerged as a promising functional material for active packaging due to its strong antioxidant, non-cytotoxic, anti-inflammatory effects, anticancer, prevention of diabetes, obesity, and medicinal effects. This review discusses and summarizes recent information on using saffron as a multifunctional material for active and intelligent food packaging applications. In particular, research on biocompatible natural polymer-based active packaging films containing saffron is being reviewed. In addition, the prospect of saffron-based intelligent packaging film as a safe freshness indicator for monitoring quality changes in various foods has been discussed. Finally, it highlighted the current challenges, development directions, and prospects for saffron-based active and intelligent packaging materials that will promote the commercialization of safe and sustainable packaging in the food industry. It is expected that the recognition of saffron as a functional packaging material will increase and the possibility of its application as a packaging film will increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Bellachioma et al. (2022)

Fig. 3

Adapted from Ghaffari and Roshanravan (2019)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data supporting the findings of this study are available upon request from the corresponding author.

References

  • Abbasvali, M., Ranaei, A., Shekarforoush, S. S., & Moshtaghi, H. (2016). The effects of aqueous and alcoholic saffron (Crocus sativus) tepal extracts on quality and shelf-life of pacific white shrimp (Litopeneous vannamei) during iced storage. Journal of Food Quality, 39(6), 732–742.

    Article  CAS  Google Scholar 

  • Abdullaev, F. I., Riverón-Negrete, L., Caballero-Ortega, H., Manuel Hernández, J., Pérez-López, I., Pereda-Miranda, R., & Espinosa-Aguirre, J. J. (2003). Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicology in Vitro, 17(5), 731–736. https://doi.org/10.1016/S0887-2333(03)00098-5

  • Abdullaev, F. I. (2002). Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). In Experimental Biology and Medicine, 227(1), 20–25. https://doi.org/10.1177/153537020222700104

  • Ahmad, M., Ashraf, B., Gani, A., & Gani, A. (2018). Microencapsulation of saffron anthocyanins using β-glucan and β-cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. International Journal of Biological Macromolecules, 109, 435–442. https://doi.org/10.1016/j.ijbiomac.2017.11.122

  • Ahmed, M. W., Haque, M. A., Mohibbullah, M., Khan, M. S. I., Islam, M. A., Mondal, M. H. T., & Ahmmed, R. (2022). A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packaging and Shelf Life, 33, 100913. https://doi.org/10.1016/J.FPSL.2022.100913

    Article  CAS  Google Scholar 

  • Akbari, M., Ezati, P., & Nazari, M. (2015). Physiological and pharmaceutical properties of peppermint as a multipurpose and valuable medicinal plant. Scientific Journal of Medical Science (SJMS), 4(4), 413–420.

    Google Scholar 

  • Alavizadeh, S. H., & Hosseinzadeh, H. (2014). Bioactivity assessment and toxicity of crocin: A comprehensive review. In Food and Chemical Toxicology, 64, 65–80. https://doi.org/10.1016/j.fct.2013.11.016

    Article  CAS  Google Scholar 

  • Alizadeh-Sani, M., Tavassoli, M., McClements, D. J., & Hamishehkar, H. (2021). Multifunctional halochromic packaging materials: Saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2020.106237

    Article  Google Scholar 

  • Almodóvar, P., Briskey, D., Rao, A., Prodanov, M., & Inarejos-García, A. M. (2020). Bioaccessibility and pharmacokinetics of a commercial saffron (Crocus sativus L.) extract. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2020/1575730

  • Álvarez-Hernández, M. H., Artés-Hernández, F., Ávalos-Belmontes, F., Castillo-Campohermoso, M. A., Contreras-Esquivel, J. C., Ventura-Sobrevilla, J. M., & Martínez-Hernández, G. B. (2018). Current scenario of adsorbent materials used in ethylene scavenging systems to extend fruit and vegetable postharvest life. Food and Bioprocess Technology, 11(3), 511–525. https://doi.org/10.1007/S11947-018-2076-7/TABLES/2

    Article  Google Scholar 

  • Armellini, R., Peinado, I., Pittia, P., Scampicchio, M., Heredia, A., & Andres, A. (2018). Effect of saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chemistry, 254, 55–63. https://doi.org/10.1016/J.FOODCHEM.2018.01.174

    Article  CAS  PubMed  Google Scholar 

  • Asbahani, A. E., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., Mousadik, A. E., Hartmann, D., Jilale, A., Renaud, F. N. R., & Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1), 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069

  • Asgarpanah, J., Darabi-Mahboub, E., Mahboubi, A., Mehrab, R., & Hakemivala, M. (2013). In-vitro evaluation of Crocus sativus l. petals and stamens as natural antibacterial agents against foodborne bacterial strains. Iranian Journal of Pharmaceutical Sciences, 9(4), 69–82.

  • Assimopoulou, A. N., Sinakos, Z., & Papageorgiou, V. P. (2005). Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research : PTR, 19(11), 997–1000. https://doi.org/10.1002/PTR.1749

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

  • Bandegi, A. R., Rashidy-Pour, A., Vafaei, A. A., & Ghadrdoost, B. (2014). Protective effects of Crocus sativus L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Advanced Pharmaceutical Bulletin, 4, 493–499. https://doi.org/10.5681/apb.2014.073

    Article  PubMed  PubMed Central  Google Scholar 

  • Bathaie, S. Z., Miri, H., Mohagheghi, M. A., Mokhtari-Dizaji, M., Shahbazfar, A. A., & Hasanzadeh, H. (2013). Saffron aqueous extract inhibits the chemically-induced gastric cancer progression in the Wistar albino rat. Iranian Journal of Basic Medical Sciences, 16(1), 27.

    PubMed  PubMed Central  Google Scholar 

  • Bathaie, S. Z., & Mousavi, S. Z. (2010). New applications and mechanisms of action of saffron and its important ingredients. Critical Reviews in Food Science and Nutrition, 50(8), 761–786. https://doi.org/10.1080/10408390902773003

    Article  CAS  PubMed  Google Scholar 

  • Bech-Larsen, T. (1996). Danish consumers’ attitudes to the functional and environmental characteristics of food packaging. Journal of Consumer Policy 1996 19:3, 19(3), 339–363. https://doi.org/10.1007/BF00411413

  • Bellachioma, L., Marini, E., Magi, G., Pugnaloni, A., Facinelli, B., Rocchetti, G., Martinelli, E., Lucini, L., Morresi, C., & Bacchetti, T. (2022). Phytochemical profiling, antibacterial and antioxidant properties of Crocus sativus flower: A comparison between tepals and stigmas. Open Chemistry, 20(1), 431–443.

    Article  CAS  Google Scholar 

  • Bhandari, P. R. (2015). Crocus sativus L. (saffron) for cancer chemoprevention: A mini review. Journal of Traditional and Complementary Medicine, 5(2), 81–87. https://doi.org/10.1016/j.jtcme.2014.10.009

  • Bhat, N. A., Hamdani, A. M., & Masoodi, F. A. (2018). Development of functional cookies using saffron extract. Journal of Food Science and Technology, 55(12), 4918–4927. https://doi.org/10.1007/S13197-018-3426-1/TABLES/6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukhari, S. I., Pattnaik, B., Rayees, S., Kaul, S., & Dhar, M. K. (2015). Safranal of Crocus sativus L. inhibits inducible nitric oxide synthase and attenuates asthma in a mouse model of asthma. Phytotherapy Research, 29(4), 617–627.

  • Carradori, S., Chimenti, P., Fazzari, M., Granese, A., & Angiolella, L. (2016). Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup2), 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Cerdá-Bernad, D., Valero-Cases, E., Pastor, J.-J., & Frutos, M. J. (2022). Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Critical Reviews in Food Science and Nutrition, 62(12), 3232–3249.

    Article  PubMed  Google Scholar 

  • Chauhan, C., Dhir, A., Akram, M. U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 295, 126438. https://doi.org/10.1016/j.jclepro.2021.126438

  • Chen, K., Wang, X. M., Chen, F., & Bai, J. (2017). In vitro antimicrobial and free radical scavenging activities of the total flavonoid in petal and stamen of Crocus sativus. Indian Journal of Pharmaceutical Sciences, 79(3), 482–487.

    Article  CAS  Google Scholar 

  • Christodoulou, E., Kadoglou, N. P., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: A natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634–1649. https://doi.org/10.1111/JPHP.12456

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro, A. M., Mancini, A., Lizzi, A. R., De Simone, A., Marroccella, C. E., Gravina, G. L., Tatone, C., & Festuccia, C. (2013). Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutrition and Cancer, 65(6), 930–942. https://doi.org/10.1080/01635581.2013.767368

    Article  CAS  PubMed  Google Scholar 

  • Da Porto, C., & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059

  • Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: Legal aspects and safety concerns. Trends in Food Science and Technology, 19(SUPPL. 1), S103–S112. https://doi.org/10.1016/j.tifs.2008.09.011

    Article  CAS  Google Scholar 

  • De Monte, C., Bizzarri, B., Gidaro, M. C., Carradori, S., Mollica, A., Luisi, G., Granese, A., Alcaro, S., Costa, G., & Basilico, N. (2015). Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(6), 1027–1033.

  • Dintcheva, N. T., & D’anna, F. (2019). Anti-/pro-oxidant behavior of naturally occurring molecules in polymers and biopolymers: A brief review. ACS Sustainable Chemistry and Engineering, 7(15), 12656–12670. https://doi.org/10.1021/ACSSUSCHEMENG.9B02127/ASSET/IMAGES/LARGE/SC-2019-021275_0002.JPEG

    Article  CAS  Google Scholar 

  • Ebrahimi Tirtashi, F., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2019). Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. International Journal of Biological Macromolecules, 136, 920–926. https://doi.org/10.1016/J.IJBIOMAC.2019.06.148

    Article  CAS  PubMed  Google Scholar 

  • Etxabide, A., Kilmartin, P. A., & Maté, J. I. (2021). Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control, 121, 107645. https://doi.org/10.1016/J.FOODCONT.2020.107645

    Article  CAS  Google Scholar 

  • Ezati, P., Khan, A., Rhim, J.-W., Kim, J. T., & Molaei, R. (2022a). pH-responsive strips integrated with resazurin and carbon dots for monitoring shrimp freshness. Colloids and Surfaces B: Biointerfaces, 113013. https://doi.org/10.1016/j.colsurfb.2022a.113013

  • Ezati, P., Priyadarshi, R., & Rhim, J.-W. (2022b). Prospects of sustainable and renewable source-based carbon quantum dots for food packaging applications. Sustainable Materials and Technologies, 33, e00494. https://doi.org/10.1016/j.susmat.2022b.e00494

  • Ezati, P., & Rhim, J.-W. (2021a). Fabrication of quercetin-loaded biopolymer films as functional packaging materials. ACS Applied Polymer Materials, 3(4), 2131–2137. https://doi.org/10.1021/acsapm.1c00177

    Article  CAS  Google Scholar 

  • Ezati, P., & Rhim, J.-W. (2021b). Starch and agar-based color-indicator films integrated with shikonin for smart packaging application of shrimp. ACS Food Science & Technology, 1(10), 1963–1969. https://doi.org/10.1021/acsfoodscitech.1c00292

    Article  CAS  Google Scholar 

  • Ezati, P., & Rhim, J.-W. (2022). Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion. Colloids and Surfaces B: Biointerfaces, 219, 112804. https://doi.org/10.1016/j.colsurfb.2022.112804

  • Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., & Han, S. (2022c). Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biology and Technology, 186, 111845. https://doi.org/10.1016/j.postharvbio.2022c.111845

  • Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., Roy, S., Min, S., Kim, Y. H., Lee, S.-G., & Han, S. (2022d). Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies, e00397. https://doi.org/10.1016/j.susmat.2022d.e00397

  • Ezati, P., Rhim, J. W., Moradi, M., Tajik, H., & Molaei, R. (2020). CMC and CNF-based alizarin incorporated reversible pH-responsive color indicator films. Carbohydrate Polymers, 246, 116614. https://doi.org/10.1016/J.CARBPOL.2020.116614

    Article  CAS  PubMed  Google Scholar 

  • Ezati, P., Riahi, Z., & Rhim, J.-W. (2022e). CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocolloids, 122, 107104. https://doi.org/10.1016/j.foodhyd.2021.107104

  • Ezati, P., Roy, S., & Rhim, J.-W. (2021). Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 128123. https://doi.org/10.1016/j.colsurfa.2021.128123

  • Ezati, P., Roy, S., & Rhim, J.-W. (2022f). Effect of saffron on the functional property of edible films for active packaging applications. ACS Food Science & Technology.

  • Ezati, P., Tajik, H., & Moradi, M. (2019). Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensors and Actuators B: Chemical, 285, 519–528. https://doi.org/10.1016/j.snb.2019.01.089

  • Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056. https://doi.org/10.3390/MOLECULES24061056

  • Gaglio, R., Gentile, C., Bonanno, A., Vintaloro, L., Perrone, A., Mazza, F., Barbaccia, P., Settanni, L., & Di Grigoli, A. (2019). Effect of saffron addition on the microbiological, physicochemical, antioxidant and sensory characteristics of yoghurt. International Journal of Dairy Technology, 72(2), 208–217. https://doi.org/10.1111/1471-0307.12569

    Article  CAS  Google Scholar 

  • Ganiari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science & Technology, 68, 70–82. https://doi.org/10.1016/J.TIFS.2017.08.009

    Article  CAS  Google Scholar 

  • Ghaffari, S., & Roshanravan, N. (2019). Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomedicine & Pharmacotherapy, 109, 21–27. https://doi.org/10.1016/J.BIOPHA.2018.10.031

    Article  CAS  Google Scholar 

  • Ghorbani, M., Divsalar, E., Molaei, R., Ezati, P., Moradi, M., Tajik, H., & Abbaszadeh, M. (2021). A halochromic indicator based on polylactic acid and anthocyanins for visual freshness monitoring of minced meat, chicken fillet, shrimp, and fish roe. Innovative Food Science & Emerging Technologies, 74, 102864. https://doi.org/10.1016/j.ifset.2021.102864

  • Gismondi, A., Serio, M., Canuti, L., & Canini, A. (2012). Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). American Journal of Plant Sciences, 03(11), 1573–1580. https://doi.org/10.4236/ajps.2012.311190

  • Goupy, P., Vian, M. A., Chemat, F., & Caris-Veyrat, C. (2013). Identification and quantification of flavonols, anthocyanins and lutein diesters in tepals of Crocus sativus by ultra performance liquid chromatography coupled to diode array and ion trap mass spectrometry detections. Industrial Crops and Products, 44, 496–510. https://doi.org/10.1016/j.indcrop.2012.10.004

  • Habibi, M. B., & Bagheri, B. (1989). Agriculture processing and chemicals and standards of saffron. Iran science research center. Khorasan. Iran.

  • Hashemi, S. M. B., & Jafarpour, D. (2020). The efficacy of edible film from Konjac glucomannan and saffron petal extract to improve shelf life of fresh-cut cucumber. Food Science & Nutrition, 8(7), 3128–3137.

    Article  CAS  Google Scholar 

  • Heydari, S., & Haghayegh, G. H. (2014). Extraction and microextraction techniques for the determination of compounds from saffron. Canadian Chemical Transactions, 2, 221–247.

    Google Scholar 

  • Hosseinzadeh, H., & Younesi, H. M. (2002). Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacology, 2, 7. https://doi.org/10.1186/1471-2210-2-7

  • Jafari, S. M., Bahrami, I., Dehnad, D., & Shahidi, S. A. (2018). The influence of nanocellulose coating on saffron quality during storage. Carbohydrate Polymers, 181, 536–542.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Q., Neilson, A. P., Stewart, A. C., O’Keefe, S. F., Kim, Y. T., McGuire, M., Wilder, G., & Huang, H. (2018). Integrated approach for the valorization of red grape pomace: Production of oil, polyphenols, and acetone-butanol-ethanol. ACS Sustainable Chemistry and Engineering, 6(12), 16279–16286. https://doi.org/10.1021/ACSSUSCHEMENG.8B03136/ASSET/IMAGES/LARGE/SC-2018-031366_0005.JPEG

    Article  CAS  Google Scholar 

  • Kanakis, C. D., Tarantilis, P. A., Tajmir-Riahi, H. A., & Polissiou, M. G. (2007). Crocetin, dimethylcrocetin, and safranal bind human serum albumin: Stability and antioxidative properties. Journal of Agricultural and Food Chemistry, 55(3), 970–977. https://doi.org/10.1021/JF062638L

    Article  CAS  PubMed  Google Scholar 

  • Kang, C., Lee, H., Jung, E. S., Seyedian, R., Jo, M., Kim, J., Kim, J. S., & Kim, E. (2012). Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chemistry, 135(4), 2350–2358. https://doi.org/10.1016/J.FOODCHEM.2012.06.092

  • Khoulati, A., Ouahhoud, S., Mamri, S., Alaoui, K., Lahmass, I., Choukri, M., Kharmach, E. zahra, Asehraou, A., & Saalaoui, E. (2019). Saffron extract stimulates growth, improves the antioxidant components of Solanum lycopersicum L., and has an antifungal effect. Annals of Agricultural Sciences, 64(2), 138–150. https://doi.org/10.1016/J.AOAS.2019.10.002

  • Kothari, D., Thakur, R., & Kumar, R. (2021). Saffron (Crocus sativus L.): Gold of the spices - A comprehensive review. Horticulture, Environment, and Biotechnology, 62(5), 661–677.

  • Lacoste, A., Schaich, K. M., Zumbrunnen, D., & Yam, K. L. (2005). Advancing controlled release packaging through smart blending. Packaging Technology and Science, 18(2), 77–87. https://doi.org/10.1002/PTS.675

    Article  CAS  Google Scholar 

  • Lage, M., & Cantrell, C. L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulturae, 121(3), 366–373. https://doi.org/10.1016/j.scienta.2009.02.017

  • Lee, J. J. L., Cui, X., Chai, K. F., Zhao, G., & Chen, W. N. (2020). Interfacial assembly of a cashew nut (Anacardium occidentale) testa extract onto a cellulose-based film from sugarcane bagasse to produce an active packaging film with pH-triggered release mechanism. Food and Bioprocess Technology, 13(3), 501–510. https://doi.org/10.1007/S11947-020-02414-Z/FIGURES/4

    Article  CAS  Google Scholar 

  • Maggi, M. A., Bisti, S., & Picco, C. (2020). Chemical composition and neuroprotective activity. Molecules (Basel, Switzerland), 25(23). https://doi.org/10.3390/molecules25235618

  • Mardani, H., Maninang, J., Appiah, K. S., Oikawa, Y., Azizi, M., & Fujii, Y. (2019). Evaluation of biological response of lettuce (Lactuca sativa L.) and weeds to safranal allelochemical of saffron (Crocus sativus) by using static exposure method. Molecules, 24(9), 1788. https://doi.org/10.3390/MOLECULES24091788

  • Mehri, S., Abnous, K., Khooei, A., Mousavi, S. H., Shariaty, V. M., & Hosseinzadeh, H. (2015). Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iranian Journal of Basic Medical Sciences, 18(9), 902.

    PubMed  PubMed Central  Google Scholar 

  • Melnyk, J. P., Wang, S., & Marcone, M. F. (2010). Chemical and biological properties of the world’s most expensive spice: Saffron. Food Research International, 43(8), 1981–1989. https://doi.org/10.1016/j.foodres.2010.07.033

  • Min, S., Ezati, P., & Rhim, J.-W. (2022). Gelatin-based packaging material incorporated with potato skins carbon dots as functional filler. Industrial Crops and Products, 181, 114820. https://doi.org/10.1016/j.indcrop.2022.114820

  • Mir, T., & ul G., Wani, A. K., Singh, J., & Shukla, S. (2022). Therapeutic application and toxicity associated with Crocus sativus (saffron) and its phytochemicals. Pharmacological Research - Modern Chinese Medicine, 4, 100136. https://doi.org/10.1016/J.PRMCM.2022.100136

    Article  Google Scholar 

  • Moalem-Banhangi, M., Ghaeni, N., & Ghasemi, S. (2021). Saffron derived carbon quantum dot/N-doped ZnO/fulvic acid nanocomposite for sonocatalytic degradation of methylene blue. Synthetic Metals, 271, 116626. https://doi.org/10.1016/j.synthmet.2020.116626

  • Moallem, S. A., Hariri, A. T., Mahmoudi, M., & Hosseinzadeh, H. (2014). Effect of aqueous extract of Crocus sativus L. (saffron) stigma against subacute effect of diazinon on specific biomarkers in rats. Toxicology and Industrial Health, 30(2), 141–146. https://doi.org/10.1177/0748233712452609

  • Modaghegh, M.-H., Shahabian, M., Esmaeili, H.-A., Rajbai, O., & Hosseinzadeh, H. (2008). Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine, 15(12), 1032–1037. https://doi.org/10.1016/j.phymed.2008.06.003

  • Mohamadpour, A. H., Ayati, Z., Parizadeh, M.-R., Rajbai, O., & Hosseinzadeh, H. (2013). Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iranian Journal of Basic Medical Sciences, 16(1), 39–46.

    PubMed  PubMed Central  Google Scholar 

  • Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222, 115030. https://doi.org/10.1016/j.carbpol.2019.115030

    Article  CAS  PubMed  Google Scholar 

  • Morone, P., Koutinas, A., Gathergood, N., Arshadi, M., & Matharu, A. (2019). Food waste: Challenges and opportunities for enhancing the emerging bio-economy. Journal of Cleaner Production, 221, 10–16. https://doi.org/10.1016/J.JCLEPRO.2019.02.258

    Article  Google Scholar 

  • Moshiri, M., Vahabzadeh, M., & Hosseinzadeh, H. (2015). Clinical applications of saffron (Crocus sativus) and its constituents: A review. Drug Research, 65(6), 287–295. https://doi.org/10.1055/S-0034-1375681/ID/R2013-11-0491REV-0071

    Article  CAS  PubMed  Google Scholar 

  • Mousavi, B., Bathaie, S. Z., Fadai, F., Ashtari, Z., Ali Beigi, N., Farhang, S., Hashempour, S., Shahhamzei, N., & Heidarzadeh, H. (2015). Safety evaluation of saffron stigma (Crocus sativus L.) aqueous extract and crocin in patients with schizophrenia. Avicenna Journal of Phytomedicine, 5(5), 413–419.

  • Mzabri, I., Addi, M., & Berrichi, A. (2019). Traditional and modern uses of saffron (Crocus sativus). Cosmetics, 6(4), 63. https://doi.org/10.3390/COSMETICS6040063

    Article  CAS  Google Scholar 

  • Nair, S. C., Pannikar, B., & Panikkar, K. R. (1991). Antitumor activity of saffron (Crocus sativus). Cancer Letters, 57(2), 109–114. https://doi.org/10.1016/0304-3835(91)90203-T

    Article  CAS  PubMed  Google Scholar 

  • Najafi, Z., Cetinkaya, T., Bildik, F., Altay, F., & Yeşilçubuk, N. Ş. (2022). Nanoencapsulation of saffron (Crocus sativus L.) extract in zein nanofibers and their application for the preservation of sea bass fillets. LWT - Food Science and Technology, 163, 113588. https://doi.org/10.1016/j.lwt.2022.113588

  • Najafi, Z., Kahn, C. J. F., Bildik, F., Arab-Tehrany, E., & Şahin-Yeşilçubuk, N. (2021). Pullulan films loading saffron extract encapsulated in nanoliposomes; preparation and characterization. International Journal of Biological Macromolecules, 188, 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Neeraj, N. K. (2019). Polysaccharide-based component and their relevance in edible film/coating: A review. Nutrition and Food Science, 49(5). https://doi.org/10.1108/NFS-10-2018-0294

  • Ohba, T., Ishisaka, M., Tsujii, S., Tsuruma, K., Shimazawa, M., Kubo, K., Umigai, N., Iwawaki, T., & Hara, H. (2016). Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo. European Journal of Pharmacology, 789, 244–253. https://doi.org/10.1016/j.ejphar.2016.07.036

  • Omolayo, Y., Feingold, B. J., Neff, R. A., & Romeiko, X. X. (2021). Life cycle assessment of food loss and waste in the food supply chain. Resources, Conservation and Recycling, 164, 105119. https://doi.org/10.1016/J.RESCONREC.2020.105119

    Article  Google Scholar 

  • Panzella, L., & Napolitano, A. (2017). Natural phenol polymers: Recent advances in food and health applications. Antioxidants, 6(2), 30. https://doi.org/10.3390/ANTIOX6020030

  • Pfander, H., & Schurtenberger, H. (1982). Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry, 21(5), 1039–1042. https://doi.org/10.1016/S0031-9422(00)82412-7

  • Pintado, C., de Miguel, A., Acevedo, O., Nozal, L., Novella, J. L., & Rotger, R. (2011). Bactericidal effect of saffron (Crocus sativus L.) on Salmonella enterica during storage. Food Control, 22(3–4), 638–642. https://doi.org/10.1016/J.FOODCONT.2010.09.031

  • Qin, Y., Liu, Y., Yuan, L., Yong, H., & Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96, 102–116. https://doi.org/10.1016/J.FOODHYD.2019.05.017

    Article  CAS  Google Scholar 

  • Ramadan, A., Soliman, G., Mahmoud, S. S., Nofal, S. M., & Abdel-Rahman, R. F. (2012). Evaluation of the safety and antioxidant activities of Crocus sativus and propolis ethanolic extracts. Journal of Saudi Chemical Society, 16(1), 13–21. https://doi.org/10.1016/j.jscs.2010.10.012

  • Rehan, M., Abdel-Wahed, N. A. M., Farouk, A., & El-Zawahry, M. M. (2018). Extraction of valuable compounds from orange peel waste for advanced functionalization of cellulosic surfaces. ACS Sustainable Chemistry and Engineering, 6(5), 5911–5928. https://doi.org/10.1021/ACSSUSCHEMENG.7B04302/ASSET/IMAGES/LARGE/SC-2017-04302C_0012.JPEG

    Article  CAS  Google Scholar 

  • Robertson, G. L. (2005). Food Packaging- Principles and Practice (G. L. Robertson (ed.); 2nd Edition). CRC Press. https://doi.org/10.1201/9781420056150

  • Rodriguez-Ruiz, V., Barzegari, A., Zuluaga, M., Zunooni-Vahed, S., Rahbar-Saadat, Y., Letourneur, D., Gueguen, V., & Pavon-Djavid, G. (2016). Potential of aqueous extract of saffron (Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. Journal of Functional Foods, 26, 123–134. https://doi.org/10.1016/j.jff.2016.07.003

  • Roniawati, I., Putriana, N. A., Putri, A. N., & Nur’aini, Y. A. (2021). Review: Saffron’s activity as an active ingredient in cosmetics. Indonesian Journal of Pharmaceutics, 3(2), 74–81. https://doi.org/10.24198/IDJP.V3I2.34876

  • Roy, S., Ezati, P., Priyadarshi, R., Biswas, D., & Rhim, J.-W. (2022). Recent advances in metal sulfide nanoparticle-added bionanocomposite films for food packaging applications. Critical Reviews in Food Science and Nutrition, 0(0), 1–14. https://doi.org/10.1080/10408398.2022.2144794

  • Roy, S., Ezati, P., & Rhim, J.-W. (2021). Gelatin/carrageenan-based functional films with carbon dots from enoki mushroom for active food packaging applications. ACS Applied Polymer Materials, 3(12), 6437–6445. https://doi.org/10.1021/acsapm.1c01175

    Article  CAS  Google Scholar 

  • Roy, S., & Rhim, J.-W. (2020a). Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocolloids, 98, 105302. https://doi.org/10.1016/j.foodhyd.2019.105302

  • Roy, S., & Rhim, J.-W. (2020b). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1776211

    Article  PubMed  Google Scholar 

  • Rubio-Moraga, A., Trapero, A., Ahrazem, O., & Gómez-Gómez, L. (2010). Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry, 71(13), 1506–1513. https://doi.org/10.1016/j.phytochem.2010.05.026

  • Salwee, Y. (2013). Saffron as a valuable spice: A comprehensive review. African Journal of Agricultural Research, 8(3), 234–242.

    Google Scholar 

  • Samarghandian, S., & Borji, A. (2014). Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Research, 6(2), 99–107. https://doi.org/10.4103/0974-8490.128963

  • Schmidt, M., Betti, G., & Hensel, A. (2007). Saffron in phytotherapy: Pharmacology and clinical uses. Wiener Medizinische Wochenschrift, 157(13–14), 315–319. https://doi.org/10.1007/s10354-007-0428-4

    Article  PubMed  Google Scholar 

  • Shahi, T., Assadpour, E., & Jafari, S. M. (2016). Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends in Food Science & Technology, 58, 69–78. https://doi.org/10.1016/j.tifs.2016.10.010

  • Singla, R. K., & Bhat, G. V. (2011). Crocin: An overview. Indo Global Journal of Pharmaceutical Sciences, 1(4), 281–286.

    Article  CAS  Google Scholar 

  • Soltani Firouz, M., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113. https://doi.org/10.1016/J.FOODRES.2021.110113

    Article  CAS  PubMed  Google Scholar 

  • Taherkhani, E., Moradi, M., Tajik, H., Molaei, R., & Ezati, P. (2020). Preparation of on-package halochromic freshness/spoilage nanocellulose label for the visual shelf life estimation of meat. International Journal of Biological Macromolecules, 164, 2632–2640. https://doi.org/10.1016/j.ijbiomac.2020.08.177

  • Tarantilis, P. A., Beljebbar, A., Manfait, M., & Polissiou, M. (1998). FT-IR, FT-Raman spectroscopic study of carotenoids from saffron (Crocus sativus L.) and some derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(4), 651–657. https://doi.org/10.1016/S1386-1425(98)00024-9

  • Tarantilis, P. A., Polissiou, M., & Manfait, M. (1994). Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. Journal of Chromatography A, 664(1), 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Tian, F., Decker, E. A., & Goddard, J. M. (2013). Controlling lipid oxidation of food by active packaging technologies. Food & Function, 4(5), 669–680. https://doi.org/10.1039/C3FO30360H

    Article  CAS  Google Scholar 

  • Uttara, B., Singh, A., Zamboni, P., & Mahajan, R. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. C., & Jiménez, A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2(FEB), 6. https://doi.org/10.3389/FCHEM.2014.00006/XML/NLM

  • Valero, D., Valverde, J. M., Martínez-Romero, D., Guillén, F., Castillo, S., & Serrano, M. (2006). The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of table grapes. Postharvest Biology and Technology, 41(3), 317–327. https://doi.org/10.1016/J.POSTHARVBIO.2006.04.011

    Article  CAS  Google Scholar 

  • Wali, A. F., Alchamat, H. A. A., Hariri, H. K., Hariri, B. K., Menezes, G. A., Zehra, U., Rehman, M. U., & Ahmad, P. (2020). Antioxidant, antimicrobial, antidiabetic and cytotoxic activity of Crocus sativus L. petals. Applied Sciences, 10(4), 1519.

  • Werner, B. G., Koontz, J. L., & Goddard, J. M. (2017). Hurdles to commercial translation of next generation active food packaging technologies. Current Opinion in Food Science, 16, 40–48. https://doi.org/10.1016/J.COFS.2017.07.007

    Article  Google Scholar 

  • Winterhalter, P., & Straubinger, M. (2000). Saffron - Renewed interest in an ancient spice. Food Reviews International, 16(1), 39–59. https://doi.org/10.1081/FRI-100100281

    Article  CAS  Google Scholar 

  • Wyrwa, J., & Barska, A. (2017). Innovations in the food packaging market: Active packaging. European Food Research and Technology, 243(10), 1681–1692. https://doi.org/10.1007/S00217-017-2878-2/TABLES/2

    Article  CAS  Google Scholar 

  • Xi, L., Qian, Z., Shen, X., Wen, N., & Zhang, Y. (2005). Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta Medica, 71(10), 917–922. https://doi.org/10.1055/S-2005-871248

    Article  CAS  PubMed  Google Scholar 

  • Xi, L., Qian, Z., Xu, G., Zheng, S., Sun, S., Wen, N., Sheng, L., Shi, Y., & Zhang, Y. (2007). Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. The Journal of Nutritional Biochemistry, 18(1), 64–72. https://doi.org/10.1016/J.JNUTBIO.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  • Xing, B., Li, S., Yang, J., Lin, D., Feng, Y., Lu, J., & Shao, Q. (2021). Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. Journal of Ethnopharmacology, 281, 114555. https://doi.org/10.1016/j.jep.2021.114555

  • Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90, 216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015

    Article  CAS  Google Scholar 

  • Zaitoon, A., Luo, X., & Lim, L. T. (2022). Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri-food products: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 541–579. https://doi.org/10.1111/1541-4337.12874

    Article  CAS  PubMed  Google Scholar 

  • Zara, S., Petretto, G. L., Mannu, A., Zara, G., Budroni, M., Mannazzu, I., Multineddu, C., Pintore, G., & Fancello, F. (2021). Antimicrobial activity and chemical characterization of a non-polar extract of saffron stamens in food matrix. Foods, 10(4). https://doi.org/10.3390/FOODS10040703

  • Zarinkamar, F., Tajik, S., & Soleimanpour, S. (2011). Effects of altitude on anatomy and concentration of crocin, picrocrocin and safranal in Crocus sativus L. Australian Journal of Crop Science, 5, 831–838.

    CAS  Google Scholar 

  • Zhai, X., Li, Z., Shi, J., Huang, X., Sun, Z., Zhang, D., Zou, X., Sun, Y., Zhang, J., Holmes, M., Gong, Y., Povey, M., & Wang, S. (2019). A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry, 290, 135–143. https://doi.org/10.1016/J.FOODCHEM.2019.03.138

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A., Shen, Y., Cen, M., Hong, X., Shao, Q., Chen, Y., & Zheng, B. (2019). Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins. Industrial Crops and Products, 133, 111–117. https://doi.org/10.1016/j.indcrop.2019.03.009

  • Zhang, X., Zhao, Y., Shi, Q., Zhang, Y., Liu, J., Wu, X., & Fang, Z. (2021). Development and characterization of active and pH-sensitive films based on psyllium seed gum incorporated with free and microencapsulated mulberry pomace extracts. Food Chemistry, 352, 129333. https://doi.org/10.1016/J.FOODCHEM.2021.129333

    Article  CAS  PubMed  Google Scholar 

  • Zuin, V. G., & Ramin, L. Z. (2018). Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Topics in Current Chemistry (z), 376, 229–282. https://doi.org/10.1007/978-3-319-90653-9_8

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2022R1A2B5B02001422).

Author information

Authors and Affiliations

Authors

Contributions

Parya Ezati and Ajahar Khan: Investigation; Formal analysis; Writing-original draft. Jong-Whan Rhim: Funding acquisition; Supervision; Writing-review & editing. Swarup Roy and Zahoor Ul Hassan: Writing-original draft.

Corresponding author

Correspondence to Jong-Whan Rhim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezati, P., Khan, A., Rhim, JW. et al. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. Food Bioprocess Technol 16, 1177–1196 (2023). https://doi.org/10.1007/s11947-022-02949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02949-3

Keywords

Navigation