Skip to main content

Advertisement

Log in

Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng

  • Review Article
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Red ginseng (RG) is mainly divided into Chinese red ginseng (CRG), American red ginseng (ARG), and Korean red ginseng (KRG). The three red ginsengs exhibit good bioactivities because of rich rare ginsenosides than ginseng. Additionally, there are obvious distinctions from the chemical composition and content of CRG, ARG, and KRG, thereby leading to differences in various application, together with a wide range of red ginseng products on the market with uneven quality. Therefore, people can’t distinguish high-quality red ginseng well at the time of purchase. Just currently, there have been no systematic reports on processing technologies, chemical compositions, and bioactivities among the three red ginsengs. Accordingly, a comprehensive description of CRG, ARG, and KRG is necessarily performed to show their similarities and differences. In particular, the processing technologies of the three red ginsengs are summarized and compared in detail, which provides appropriate reference for the technical improvement of processing red ginseng in the future. More importantly, it is helpful for people to understand the similarities and differences from the three red ginsengs better to buy genuine red ginseng products they want.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • An, Q., Guo, M., Shen, Y.-J., Zhang, Y., Wang, R.-L., Guo, L., Zheng, Y.-G., & Zhang, D. (2020). Comparative study on changes of ginsenosides and activities of American ginseng before and after steaming. China Journal of Chinese Materia Medica, 45, 4404–4410. https://doi.org/10.19540/j.cnki.cjcmm.20200622.306.

  • Bae, B.-S., Lee, M. W., Lee, J. S., Park, C. S., & Han, M. W. (2021). Comparison of the constituents of processed Korean and American ginseng grown in Korea for six years. Korean Journal of Medicinal Crop Science, 29, 35–44.

    Article  Google Scholar 

  • Baek, K.-S., Hong, Y. D., Kim, Y., Sung, N. Y., Yang, S., Lee, K. M., Park, J. Y., Park, J. S., Rho, H. S., Shin, S. S., & Cho, J. Y. (2015). Anti-inflammatory activity of AP-SF a ginsenoside-enriched fraction from Korean ginseng. Journal of Ginseng Research, 39(2), 155–161. https://doi.org/10.1016/j.jgr.2014.10.004

    Article  PubMed  Google Scholar 

  • Bai, X., Huang, X., Liu, S., Yue, H., & Zhang, Y. (2017). Processing red ginseng involves obtaining fresh American ginseng maintaining fresh American ginseng drying American ginseng steaming American ginseng drying steamed product and cooling product. Patent: CN107007642–A. [In Chinese]

  • Bao, J. (2006). Studies on the chemical composition in the Red Panax quinquefolium. Jilin Agricultural University. [In Chinese].

    Google Scholar 

  • Bian, Y., An, G.-J., Kim, K., Ngo, T., Shin, S., Bae, O.-N., Lim, K.-M., & Chung, J.-H. (2019). Ginsenoside Rg3, a component of ginseng, induces pro-thrombotic activity of erythrocytes via hemolysis-associated phosphatidylserine exposure. Food and Chemical Toxicology, 131, 110553. https://doi.org/10.1016/j.fct.2019.05.061

    Article  CAS  PubMed  Google Scholar 

  • Cao, B., Duan, M., Liu, T., Peng, B., & Cao, T. (2017). Preparation of rare ginsenoside-rich red ginseng product by cutting unprocessed raw red ginseng or fresh ginseng, drying, soaking in amino acid solution, drying, soaking in fructose solution, draining, steaming, cooling, and oven drying. Patent: CN106360715–ACN106360715vB.

  • Cao, Z., Chu, S., & Lou, Z. (2019). Processing root of dunn antictrema comprises using sun-dried ginseng, red ginseng and sun-dried American ginseng as raw materials, and heating gradually. Patent: CN110368410–A.

  • Cao, Z., Jin, H., Liang, Y., Wan, H., & Ni, Y. (2003). A comparative study on Chinese molded red ginseng and Korean ginseng. Ginseng Research, 13, 15–17. https://doi.org/10.19403/j.cnki.1671-1521.2003.03.005 [In Chinese].

    Article  Google Scholar 

  • Cao, Z., Jin, H., Liang, Y., Wan, H., & Tian, C. (2002). Study on processing method of Korean ginseng. Ginseng Research, 6, 11–14. https://doi.org/10.19403/j.cnki.1671-1521.2002.04.005 [In Chinese].

    Article  Google Scholar 

  • Chang, X., & Li, J. (2010). Analysis of the similarities and differences between Chinese red ginseng and Korean red ginseng. China Pharmacy, 19(16), 68–69. [In Chinese]

  • Chen, W., Balan, P., & Popovich, D. G. (2019). Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. Studies in Natural Products Chemistry, 63, 161–195. https://doi.org/10.1016/b978-0-12-817901-7.00006-x

    Article  CAS  Google Scholar 

  • Cho, Y.-K., Kim, J.-E., Lee, S.-H., Foley, B. T., & Choi, B.-S. (2019a). Impact of HIV-1 subtype and Korean red ginseng on AIDS progression: Comparison of subtype B and subtype D. Journal of Ginseng Research, 43(2), 312–318. https://doi.org/10.1016/j.jgr.2018.07.006

    Article  PubMed  Google Scholar 

  • Cho, Y. K., Kim, J. E., & Woo, J. H. (2019b). Korean red ginseng increases defective pol gene in peripheral blood mononuclear cells of HIV-1-infected patients; inhibition of its detection during ginseng-based combination therapy. Journal of Ginseng Research, 43(4), 684–691. https://doi.org/10.1016/j.jgr.2019.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, Y. K., & Kim, J.-E. (2020). The frequency of defective genes in vif and vpr genes in 20 hemophiliacs is associated with Korean red ginseng and highly active antiretroviral therapy: The impact of lethal mutations in vif and vpr genes on HIV-1 evolution. Journal of Ginseng Research, 45(1), 149–155. https://doi.org/10.1016/j.jgr.2020.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu, L. L., & Bae, H. (2021). Bacterial endophytes from ginseng and their biotechnological application. Journal of Ginseng Research. https://doi.org/10.1016/j.jgr.2021.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai, G., Sun, B., Gong, T., Pan, Z., Meng, Q., & Ju, W. (2019). Ginsenoside Rb2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β/Smad signaling. Phytomedicine, 56, 126–135. https://doi.org/10.1016/j.phymed.2018.10.025

    Article  CAS  PubMed  Google Scholar 

  • Deng, H., Jin, M., Yuan, W., & Pan, L. (2010). Effect of red ginseng on VEGF expression and ganglion cell apoptosis in diabetic rats. The ninth annual meeting of Chinese Medicine, Integrated Chinese and Western Medicine ophthalmology, Xining, Qinghai, China.

  • Deng, X., Zhao, J., Qu, L., Duan, Z., Fu, R., Zhu, C., & Fan, D. (2020). Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer. Biochemical Pharmacology, 178, 114038. https://doi.org/10.1016/j.bcp.2020.114038

    Article  CAS  PubMed  Google Scholar 

  • Fan, S., Zhang, Z.-P., Su, H., Xu, P., Qi, H.-Y., Zhao, D.-Q., & Li, X.-Y. (2020). Panax ginseng clinical trials: Current status and future perspectives. Biomedicine & Pharmacotherapy, 132, 110832. https://doi.org/10.1016/j.biopha.2020.110832

  • Feng, R., Liu, J., Wang, Z., Zhang, J., Cates, C., Rousselle, T., Meng, Q., & Li, J. (2017). The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes. Biochemical and Biophysical Research Communications, 494(3–4), 556–568. https://doi.org/10.1016/j.bbrc.2017.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flagg, A. J. (2021). Traditional and current use of ginseng. Nursing Clinics of North America, 56(1), 109–121. https://doi.org/10.1016/j.cnur.2020.10.011

    Article  Google Scholar 

  • Fu, W., Shao, S., Zhan, Q., Bao, J., & Zhang, Y. (2015). Clinical study of red ginseng cordyceps capsule combined with benazepril for treating diabetic nephropathy in 40 cases. China Pharmaceuticals, 24(6), 29–30. [In Chinese].

    Google Scholar 

  • Gao, F.-F., Zhang, W.-Y., Liu, L.-M., Chang, C., Han, L.-K., Wei, C.-Y., Li, W., Song, Z.-F., & Zheng, Y.-N. (2012). Detection and distribution of arginine derivatives in Panax quinquefolius L and investigations of their antioxidant properties. LWT - Food Science and Technology, 49(1), 34–41. https://doi.org/10.1016/j.lwt.2012.04.022

    Article  CAS  Google Scholar 

  • Gu, L. D., Lee, J. S., Kim, K.-T., Kim, H. Y., & Lee, S. (2019). Analysis of major ginsenosides in various ginseng samples. Journal of Applied Biological Chemistry, 62, 87–91. https://doi.org/10.3839/jabc.2019.013

    Article  Google Scholar 

  • Guo, N., Zhu, L., Song, J., & Dou, D. (2019). A new simple and fast approach to analyze chemical composition on white red and black ginseng. Industrial Crops and Products, 134, 185–194. https://doi.org/10.1016/j.indcrop.2019.03.057

    Article  CAS  Google Scholar 

  • Ham, J., Jeong, D., Park, S., Kim, H. W., Kim, H., & Kim, S. J. (2019). Ginsenoside Rg3 and Korean red ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1. Journal of Ginseng Research, 43(4), 625–634. https://doi.org/10.1016/j.jgr.2019.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, X. (2015). Study on preparation process, quality standard and anti-fatigue activity of two kinds of health products of red ginseng. Jilin Agricultural University. [In Chinese]

  • He, M., Huang, X., Liu, S., Guo, C., Xie, Y., Meijer, A. H., & Wang, M. (2018). The difference between white and red ginseng: Variations in ginsenosides and immunomodulation. Planta Medica, 84(12–13), 845–854. https://doi.org/10.1055/a-0641-6240

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Li, S.-P., Zhang, Y., & Liu, S.-Y. (2017). Effect of saponins in red Panacis Quinquefolii Radix on neurochemicals in rat brain by UPLC-MS. Chinese Journal of Experimental Traditional Medical Formulae, 23(19), 111–117. https://doi.org/10.19403/j.cnki.1671-1521.2005.01.012

    Article  Google Scholar 

  • Hyun, S. H., Kim, S. W., Seo, H. W., Youn, S. H., Kyung, J. S., Lee, Y. Y., In, G., Park, C.-K., & Han, C.-K. (2020). Physiological and pharmacological features of the non-saponin components in Korean red ginseng. Journal of Ginseng Research, 44(4), 527–537. https://doi.org/10.1016/j.jgr.2020.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Im, K., Kim, J., & Min, H. (2016). Ginseng, the natural effectual antiviral: Protective effects of Korean red ginseng against viral infection. Journal of Ginseng Research, 40(4), 309–314. https://doi.org/10.1016/j.jgr.2015.09.002

    Article  PubMed  Google Scholar 

  • Jeong, E., Lim, Y., Kim, K. J., Ki, H.-H., Lee, D., Suh, J., So, S.-H., Kwon, O., & Kim, J. Y. (2020). A systems biological approach to understanding the mechanisms underlying the therapeutic potential of red ginseng supplements against metabolic diseases. Molecules, 25(8), 1967. https://doi.org/10.3390/molecules25081967

    Article  CAS  PubMed Central  Google Scholar 

  • Jeung, W., Ra, J., Tae, K. Y., Choi, I. I., Jang, S. S., Lee, J., & Sim, J. (2020). Food composition useful for improving allergic rhinitis, comprises fermented red ginseng concentrate having enhanced ginsenoside Rd content obtained by fermenting red ginseng using lactic acid bacteria. Patent: KR2020046201–A; KR2146706–B1.

  • Jin, D., Zhang, C., & Wang, Z. (1998). Determination of notoginseng in Chinese red ginseng and Korean red ginseng. Chinese Traditional Patent Medicine, 17(5), 3–5. [In Chinese]

  • Jovanovski, E., Lea Duvnjak, S., Komishon, A., Au-Yeung, F., Zurbau, A., Jenkins, A. L., Sung, M.-K., Josse, R., & Vuksan, V. (2020). Vascular effects of combined enriched Korean red ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolius) administration in individuals with hypertension and type 2 diabetes: A randomized controlled trial. Complementary Therapies in Medicine, 49, 102338. https://doi.org/10.1016/j.ctim.2020.102338

    Article  PubMed  Google Scholar 

  • Jung, J., Lee, N.-K., & Paik, H.-D. (2017). Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Science and Biotechnology, 26, 1155–1168. https://doi.org/10.1007/s10068-017-0159-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B. (2020). Producing processed ginseng useful for preventing hypertension, by washing ginseng, drying, washing ginseng with sulfur smoke, spraying e.g. lactic acid bacteria culture solution, fermenting, heating using e.g. cooking oil and aging ginseng. Patent: KR2074810-B1.

  • Kim, C. Y., Kang, B., Suh, H. J., & Choi, H.-S. (2019a). Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway. Pharmacological Research, 145, 104259. https://doi.org/10.1016/j.phrs.2019.104259

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Choi, P., Kim, T., Kim, Y., Song, B. G., Park, Y.-T., Choi, S.-J., Yoon, C. H., Lim, W.-C., Ko, H., & Ham, J. (2020). Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. Journal of Ginseng Research, 45(1), 134–148. https://doi.org/10.1016/j.jgr.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J.-E., Jang, S.-G., Lee, C. H., Lee, J. Y., Park, H., Kim, J. H., Lee, S., Kim, S. H., Park, E.-Y., Lee, K. W., & Shin, H.-S. (2019b). Beneficial effects on skin health using polysaccharides from red ginseng by-product. Journal of Food Biochemistry, 43(8), 1–10. https://doi.org/10.1111/jfbc.12961

    Article  CAS  Google Scholar 

  • Kim, J.-H. (2018). Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. Journal of Ginseng Research, 10, 264–269. https://doi.org/10.1016/j.phrs.2020.104746

    Article  CAS  Google Scholar 

  • Kim, J. H., Kim, M., Yun, S.-M., Lee, S., No, J. H., Suh, D. H., Kim, K., & Kim, Y. B. (2017). Ginsenoside Rh2 induces apoptosis and inhibits epithelial-mesenchymal transition in HEC1A and Ishikawa endometrial cancer cells. Biomedicine & Pharmacotherapy, 96, 871–876. https://doi.org/10.1016/j.biopha.2017.09.033

    Article  CAS  Google Scholar 

  • Kim, M., Mok, H., Yeo, W.-S., Ahn, J.-H., & Choi, Y.-K. (2021). Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. Journal of Ginseng Research. https://doi.org/10.1016/j.jgr.2021.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.-J., Zhang, D., & Yang, D.-C. (2015). Biosynthesis and biotechnological production of ginsenosides. Biotechnology Advances, 33(6), 717–735. https://doi.org/10.1016/j.biotechadv.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. H., & Kim, J.-H. (2014). A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. Journal of Ginseng Research, 38(3), 161–166. https://doi.org/10.1016/j.jgr.2014.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, D.-K., Park, S., Long, N. P., Min, J. E., Kim, H. M., Yang, E., Lee, S. J., Lim, J., & Kwon, S. W. (2020a). Research quality-based multivariate modeling for comparison of the pharmacological effects of black and red ginseng. Nutrients, 12(9), 2590. https://doi.org/10.3390/nu12092590

    Article  CAS  PubMed Central  Google Scholar 

  • Lee, K., & Bae, Y. H. (2021). Effect of red ginseng on visual function and vision-related quality of life in patients with glaucoma. Journal of Ginseng Research. https://doi.org/10.1016/j.jgr.2021.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, L. S., Wise, S. D., Chan, C., Parsons, T. L., Flexner, C., & Lietman, P. S. (2008). Possible differential induction of phase 2 enzyme and antioxidant pathways by American ginseng, Panax quinquefolius. Journal of Clinical Pharmacology, 48(5), 599–609. https://doi.org/10.1177/0091270008314252

    Article  PubMed  Google Scholar 

  • Lee, S. J. (2019). Producing freeze-dried red ginseng dice, comprises washing raw ginseng raw material, molding and cutting washed ginseng raw material into die shape, steaming cut ginseng dice molded into die shape, and freeze-drying steamed red ginseng dice. Patent: KR2019131891–A.

  • Lee, S. J. (2020). Producing freeze-dried red ginseng having crispy texture, comprises primarily freeze-drying preprocessed red ginseng, steaming ginseng, and secondarily freeze-drying red ginseng. Patent: KR2020055471–AKR2207558–B1.

  • Lee, S. J., In, G., Han, S.-T., Lee, M.-H., Lee, J.-W., & Shin, K.-S. (2020b). Structural characteristics of a red ginseng acidic polysaccharide rhamnogalacturonan I with immunostimulating activity from red ginseng. Journal of Ginseng Research, 44(4), 570–579. https://doi.org/10.1016/j.jgr.2019.05.002

    Article  PubMed  Google Scholar 

  • Lee, S. M. (2020b). Three hydroxylated ginsenosides from heat treatmented ginseng. Korean Journal of Pharmacognosy, 51, 255–263.

    Google Scholar 

  • Lee, S. M., Bae, B.-S., Park, H.-W., Ahn, N.-G., Cho, B.-G., Cho, Y.-L., & Kwak, Y.-S. (2015). Characterization of Korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. Journal of Ginseng Research, 39(4), 384–391. https://doi.org/10.1016/j.jgr.2015.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S. M., Kim, S. C., Oh, J., Kim, J. H., & Na, M. (2013). 20(R)-Ginsenoside Rf: A new ginsenoside from red ginseng extract. Phytochemistry Letters, 6(4), 620–624. https://doi.org/10.1016/j.phytol.2013.08.002

    Article  CAS  Google Scholar 

  • Lee, W., Park, S.-H., Lee, S., Chung, B. C., Song, M. O., Song, K. I., Ham, J., Kim, S.-N., & Kang, K. S. (2012). Increase in antioxidant effect of ginsenoside Re-alanine mixture by Maillard reaction. Food Chemistry, 135(4), 2430–2435. https://doi.org/10.1016/j.foodchem.2012.06.108

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.-J., Ryu, J. S., Kim, S.-S., Seo, H. K., Na, E. S., Lee, M.-J., Hong, S.-S., Seo, S.-K., & Kwon, H.-Y. (2020c). Residual properties of propamocarb during growth and processing of ginseng. The Korean Journal of Pesticide Science, 24, 156–162. https://doi.org/10.7585/kjps.2020.24.2.156

    Article  Google Scholar 

  • Lemmon, H. R., Sham, J., Chau, L. A., & Madrenas, J. (2012). High molecular weight polysaccharides are key immunomodulators in North American ginseng extracts: Characterization of the ginseng genetic signature in primary human immune cells. Journal of Ethnopharmacology, 142(1), 1–13. https://doi.org/10.1016/j.jep.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Chu, S., Lin, M., Gao, Y., Liu, Y., Yang, S., Zhou, X., Zhang, Y., Hu, Y., Wang, H., & Chen, N. (2020). Anticancer property of ginsenoside Rh2 from ginseng. European Journal of Medicinal Chemistry, 203, 112627–112627. https://doi.org/10.1016/j.ejmech.2020.112627

    Article  CAS  PubMed  Google Scholar 

  • Li, S.-P., Huang, X., Zhang, Y., & Liu, S.-Y. (2017a). Effects of red ginseng saponin components on neurochemicals in rat plasma. Chinese Traditional and Herbal Drugs, 48(14), 2918–2924. https://doi.org/10.7501/j.issn.0253-2670.2017.14.019

    Article  Google Scholar 

  • Li, S., Li, X.-R., Wang, G.-L., Nie, L.-X., Yang, Y.-J., Wu, H.-Z., Wei, F., Zhang, J., Tian, J.-G., & Lin, R.-C. (2012). Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 70, 605–608. https://doi.org/10.1016/j.jpba.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Xu, X., Qu, W., & Gao, Y. (2019). Preparing red ginseng product comprises washing fresh ginseng, drying, steaming, evaporating, cooling, carrying out gradient drying and further processing to obtain corresponding new red ginseng deep processing products. Patent: CN109646472–A.

  • Li, R.-Y., Zhang, W.-Z., Yan, X.-T., Hou, J.-G., Wang, Z., Ding, C.-B., Liu, W.-C., Zheng, Y.-N., Chen, C., Li, Y.-R., & Li, W. (2019a). Arginyl-fructosyl-glucose, a major Maillard reaction product of red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor κB and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. Journal of Agricultural and Food Chemistry, 67(20), 5754–5763. https://doi.org/10.1021/acs.jafc.9b00540

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Zhao, Z., Wan, J., Zhao, H. A., Bai, Y., & Liu, C. (2017). Effects of Panax quinquefolium L. Water extraction under different processed time on hypoimmunity in mice. World Chinese Medicine, 12(3), 623–630. [In Chinese]

  • Li, X., Zheng, Y., & Jia, J. (1985). Comparative study on Jilin red ginseng and Korean red ginseng Determination of ginsenosides by high speed TLC scanning. Journal of Jilin Agricultural University, 11(10), 40–42. [In Chinese]

  • Li, X., Zheng, Y., & Jia, J. (1986). Comparative study on Jilin red ginseng and Korean red ginseng-comparative analysis of trace elements in red ginseng. Chinese Traditional Patent Medicine, 3(2), 28–29. https://doi.org/10.13863/j.issn1001-4454.1986.03.021. [In Chinese]

  • Li, L.-D., Zhou, H.-L., Wang, P., Li, M.-H., & Huang, H.-P. (2013). Observation about the clinical effects of red ginseng powder on the treatment of diabetics retinopathy. Progress in Modern Biomedicine, 13(29), 5772–5775. https://doi.org/10.13241/j.cnki.pmb.2013.29.009

    Article  Google Scholar 

  • Liu, H.-B., Lu, X.-Y., Yang, H., & Fan, X.-H. (2020a). Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacological Research, 161, 2020. https://doi.org/10.1016/j.phrs.2020.105263

    Article  CAS  Google Scholar 

  • Liu, L., Xu, F.-r., Wang, Y.-z. (2020). Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. Journal of Ethnopharmacology, 263, 112792. https://doi.org/10.1016/j.jep.2020.112792.

  • Liu, J.-W., Yue, C.-Y., Wu, S., Zhao, X.-Q., Zhang, Y., & Gong, L.-H. (2019a). Study on antioxidant ability of red ginseng polysaccharide in Mice. China Food Additives, 30(9), 68–71. [In Chinese].

    Google Scholar 

  • Liu, T., Zhao, L., Hou, H., Ding, L., Chen, W., & Li, X. (2017). Ginsenoside 20(S)-Rg3 suppresses ovarian cancer migration via hypoxia-inducible factor 1 alpha and nuclear factor-kappa B signals. Tumor Biology, 39(5), 1–10. https://doi.org/10.1177/1010428317692225

    Article  CAS  Google Scholar 

  • Liu, T., Zuo, L., Guo, D., Chai, X., Xu, J., Cui, Z., Wang, Z., & Hou, C. (2019b). Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomedicine & Pharmacotherapy, 120, 109483. https://doi.org/10.1016/j.biopha.2019.109483

    Article  CAS  Google Scholar 

  • Liu, X., Liu, Z., Bai, S., & Li, S. (2001). Study on the components of monomer saponins from American red ginseng. Ginseng Research, 13, 21–22. https://doi.org/10.19403/j.cnki.1671-1521.2001.01.007 [In Chinese].

    Article  CAS  Google Scholar 

  • Liu, Y., & Fan, D. (2019). Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochemical Pharmacology, 168, 285–304. https://doi.org/10.1016/j.bcp.2019.07.008

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Wen, X., Wang, C.-Z., Li, W., Huang, W.-H., Xia, J., Ruan, C.-C., & Yuan, C.-S. (2020c). Remarkable impact of amino acids on ginsenoside transformation from fresh ginseng to red ginseng. Journal of Ginseng Research, 44(3), 424–434. https://doi.org/10.1016/j.jgr.2019.04.001

    Article  PubMed  Google Scholar 

  • Na, E. S., Lee, Y. J., Kim, S. S., Seo, H.-K., Ryu, J. S., Jo, S. H., Noh, H. H., & Kim, D.-B. (2020). Residual characteristics of diethofencarb during finseng cultivation and processing. Korean Journal of Environmental Agriculture, 39, 83–88. https://doi.org/10.5338/KJEA.2020.39.2.11

    Article  Google Scholar 

  • Najafi, T. F., Bahri, N., Tohidinik, H. R., Feyz, S., Bloki, F., Savarkar, S., & Jahanfar, S. (2021). Treatment of cancer-related fatigue with ginseng: A systematic review and meta-analysis. Journal of Herbal Medicine, 28, 100440. https://doi.org/10.1016/j.hermed.2021.100440

    Article  Google Scholar 

  • Nam, S. J., Han, Y. J., Lee, W., Kang, B., Choi, M.-K., Han, Y.-H., & Song, I.-S. (2018). Effect of red ginseng extract on the pharmacokinetics and efficacy of metformin in streptozotocin-induced diabetic rats. Pharmaceutics, 10(3), 80. https://doi.org/10.3390/pharmaceutics10030080

    Article  CAS  PubMed Central  Google Scholar 

  • Nan, M. (2010). Hongshen chongcao gelatin capsule for protecting the kidney of rats with diabetic nephropathy and its effect on the expression of MCP-1 by immunohistochemical method. Yanbian University. [In Chinese]

  • Piao, J. (2020). Processing ginseng involves selecting high-quality fresh ginseng, grading, cleaning, steaming by spraying water, suspending vacuum intermittently, drying by wind drying, heat drying, cold wind drying, and natural drying in sunlight. Patent: CN110664854–A.

  • Piao, X., & Jin, X. (2010). Processing technology of Korean ginseng. Jilin Agriculture, 11(01), 73. [In Chinese].

    Google Scholar 

  • Qi, B., Liu, L., Zhao, D.-q., Zhao, Y., Bai, X.-y., Zhang, H., Guan, Y.-y., & Zhao, S.-n. (2013). Comparative study of sugar content in Panax ginseng, P. quinquefolium and Red Ginseng. China Pharmacy, 24(7), 616–618. https://doi.org/10.6039/j.issn.1001-0408.2013.07.15. [In Chinese]

  • Qi, L.-W., Wang, C.-Z., & Yuan, C.-S. (2010). American ginseng: Potential structure-function relationship in cancer chemoprevention. Biochemical Pharmacology, 80(7), 947–954. https://doi.org/10.1016/j.bcp.2010.06.023

    Article  CAS  PubMed  Google Scholar 

  • Qi, L.-W., Wang, C.-Z., & Yuan, C.-S. (2011). Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry, 72(8), 689–699. https://doi.org/10.1016/j.phytochem.2011.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, X., Cui, C.-B., Jin, L.-Y., Jiang, X., & Zhang, L. (2019a). Effects of red ginseng extracts irradiated with 60Co-r on type 1 diabetes mice. Food and Machinery, 35(11), 171–175.

    Google Scholar 

  • Qiao, X. (2012). Research on the chemical constituents of black ginseng and comparison among black ginseng, white ginseng and red ginseng. Jilin Agricultural University. [In Chinese]

  • Qi, Z., Zhang, D., & Ma, W. (2019). Processing red ginseng for improving content of ginsenosides Rg3, Rg5 and RK1, by washing ginseng, obtaining fresh apple pear and lemon juice, filtering and mixing juices, soaking washed ginseng in solution, and steaming product. Patent: CN110302225–A.

  • Riaz, M., Rahman, N. U., Muhammad, Z. U. H., Jaffar, H. Z. E., & Manea, R. (2019). Ginseng: A dietary supplement as immune-modulator in various diseases. Trends in Food Science & Technology, 83(2019), 12–30. https://doi.org/10.1016/j.tifs.2018.11.008

    Article  CAS  Google Scholar 

  • Ryu, G.-H. (2007). Recent trend in red ginseng manufacturing process and characteristics of extruded red ginseng. Food Engineering Progress, 11(1), 1–10.

    Google Scholar 

  • Seo, B. (2021). Processing red ginseng, comprises steaming dried red ginseng, drying steamed red ginseng, aging dried red ginseng, steaming aged red ginseng and repeating steps. Patent: KR2021017426–AKR2220664–B1.

  • Shao, J.-W., Jiang, J.-L., Zou, J.-J., Yang, M.-Y., Chen, F.-M., Zhang, Y.-J., & Jia, L. (2020). Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. Journal of Functional Foods, 64, 103630. https://doi.org/10.1016/j.jff.2019.103630

    Article  CAS  Google Scholar 

  • Shin, B.-K., Park, H.-Y., & Han, J. (2010). Enzymatic biotransformation of red ginseng and the compositional change of ginsenosides. Journal of the Korean Society for Applied Biological Chemistry, 53, 553–558. https://doi.org/10.3839/jksabc.2010.085

    Article  CAS  Google Scholar 

  • Shin, J.-H., Park, Y. J., Kim, W., Kim, D.-O., Kim, B.-Y., Lee, H., & Baik, M.-Y. (2019). Change of ginsenoside profiles in processed ginseng by drying, steaming, and puffing. Journal of Microbiology and Biotechnology, 29, 222–229. https://doi.org/10.4014/jmb.1809.09056

    Article  PubMed  Google Scholar 

  • Si, X., & Nan, M. (2005). Study on processing technology of American ginseng. Ginseng Research, 35–36. https://doi.org/10.19403/j.cnki.1671-1521.2005.01.012

  • So, S.-H., Lee, J. W., Kim, Y.-S., Hyun, S. H., & Han, C.-K. (2018). Red ginseng monograph. Journal of Ginseng Research, 42(4), 549–561. https://doi.org/10.1016/j.jgr.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Sodrul, I. M. D., Wang, C., Chen, X., Du, J., & Sun, H. (2018). Role of ginsenosides in reactive oxygen species-mediated anticancer therapy. Oncotarget, 9(2), 2931–2950. https://doi.org/10.18632/oncotarget.23407

    Article  PubMed  Google Scholar 

  • Song, X., Chen, J., Sakwiwatkul, K., Li, R., & Hu, S. (2010). Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re. International Immunopharmacology, 10(3), 351–356. https://doi.org/10.1016/j.intimp.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  • Sun, N., Xu, G., Xu, S., Liu, P.-P., Zhang, F., & Jia, T.-Z. (2016a). Effect of ginseng processing on the chemical composition and pharmacology thereof. China Pharmacy, 27(6), 857–859. https://doi.org/10.4268/cjcmm20160214

    Article  CAS  Google Scholar 

  • Sun, Y., Liu, Y., & Chen, K. (2016b). Roles and mechanisms of ginsenoside in cardiovascular diseases: Progress and perspectives. Science China-Life Sciences, 59(3), 292–298. https://doi.org/10.1007/s11427-016-5007-8

    Article  CAS  PubMed  Google Scholar 

  • Wan, J.-Y., Liu, P., Wang, H.-Y., Qi, L.-W., Wang, C.-Z., Li, P., & Yuan, C.-S. (2013). Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 1286, 83–92. https://doi.org/10.1016/j.chroma.2013.02.053

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. (2003). Comparative study on red ginseng from China and Korean. Journal of Traditional Chinese Medicine, 21(2), 178–180. https://doi.org/10.13193/j.archtcm.2003.02.18.wangjm.007. [In Chinese]

  • Wang, C.-Z., Aung, H. H., Ni, M., Wu, J.-A., Tong, R., Wicks, S., He, T.-C., & Yuan, C.-S. (2007). Red American ginseng: Ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Medica, 73(7), 669–674. https://doi.org/10.1055/s-2007-981524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Liu, J., Deng, J., Wang, J., Weng, W., Chu, H., & Meng, Q. (2020). Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. Journal of Ginseng Research, 44(1), 14–23. https://doi.org/10.1016/j.jgr.2019.01.005

    Article  PubMed  Google Scholar 

  • Wang, J., Liu, D., Qian, S., Pu, S., & Fang, Z. (2011). Studies on chemical constituents of red ginseng. Chinese Wild Plant Resources 30(05), 645v647. https://doi.org/10.3969/j.issn.1006-9690.2011.06.012. [In Chinese]

  • Wang, L., Yu, X., Yang, X., Li, Y., Yao, Y., Lui, E. M. K., & Ren, G. (2015). Structural and anti-inflammatory characterization of a novel neutral polysaccharide from North American ginseng (Panax quinquefolius). International Journal of Biological Macromolecules, 74, 12–17. https://doi.org/10.1016/j.ijbiomac.2014.10.062

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Liu, Y., Zhang, X.-Y., Xu, L.-H., Ouyang, D.-Y., Liu, K.-P., Pan, H., He, J., & He, X.-H. (2014). Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. International Immunopharmacology, 23(1), 77–84. https://doi.org/10.1016/j.intimp.2014.07.028

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Qin, C., Lu, X., Marchiori, J., & Feng, Q. (2016). North American ginseng inhibits myocardial NOX2-ERK1/2 signaling and tumor necrosis factor-alpha expression in endotoxemia. Pharmacological Research, 111, 217–225. https://doi.org/10.1016/j.phrs.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., Wei, Y., Wang, C., & Xu, J. (1985). Comparative study on ginsenosides content in Chinese red ginseng and Korean red ginseng. Journal of Bethune Medical University, 11(02). 146–149. https://doi.org/10.13481/j.1671-587x.1985.02.009. [In Chinese]

  • Xia, T., Zhang, B., Li, Y., Fang, B., Zhu, X., Xu, B., Zhang, J., Wang, M., & Fang, J. (2020). New insight into 20(S)-ginsenoside Rh2 against T-cell acute lymphoblastic leukemia associated with the gut microbiota and the immune system. European Journal of Medicinal Chemistry, 203, 112582–112582. https://doi.org/10.1016/j.ejmech.2020.112582

    Article  CAS  PubMed  Google Scholar 

  • Xie, L.-J., Yuan, B.-B., Li, J.-H., Xu, F.-F., Li, L., Wang, G.-M., et al. (2019). Research progress of structural modification of ginsenosides. Ginseng Research, 31(06), 57–60. https://doi.org/10.19403/j.cnki.1671-1521.2019.06.015 [In Chinese].

    Article  Google Scholar 

  • Yan, F.-Y. (2019). Study on processing technology and quality standard of Panacis Quinquefolii Radix Rubra. Changchun University of traditional Chinese Medicine. [In Chinese]

  • Yan, F., Zhou, S., Wang, R., Xu, N., Cui, C., Qi, B., & Liu, L. (2019). Research on the optimization of processing technology of Panacis Quinquefolii Radix Rubra. Journal of Changchun University of Chinese Medicine, 35(2), 316–319.

    Google Scholar 

  • Yang, Q.-Y., Lai, X.-D., Ouyang, J., & Yang, J.-D. (2018). Effects of ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology, 409, 144–151.

    Article  CAS  Google Scholar 

  • Yang, X., Zou, J., Cai, H., Huang, X., Yang, X., Guo, D., & Cao, Y. (2017). Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling. Biomedicine & Pharmacotherapy, 96, 1240–1245. https://doi.org/10.1016/j.biopha.2017.11.092

    Article  CAS  Google Scholar 

  • Yao, F., Li, X., Sun, J., Cao, X.-X., Liu, M.-M., Li, Y.-H., & Liu, Y.-J. (2021). Thermal transformation of polar into less-polar ginsenosides through demalonylation and deglycosylation in extracts from ginseng pulp. Scientific Reports, 11, 1513. https://doi.org/10.1038/s41598-021-81079-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying, X. (2018). Purification and structural analysis of polysaccharides from Red. Northeast Normal University. [In Chinese]

  • Yoo, K. M., Lee, C., Lo, Y. M., & Moon, B. (2012). The hypoglycemic effects of American red ginseng (Panax quinquefolius L) on a diabetic mouse model. Journal of Food Science, 77(7), H147–H152. https://doi.org/10.1111/j.1750-3841.2012.02748.x

    Article  CAS  PubMed  Google Scholar 

  • Yoo, S. (2020). Processing ginseng by washing raw ginseng, loading washed ginseng in processing apparatus, irradiating ginseng with infrared rays, steaming ginseng, aging steamed ginseng, supplying ozone gas to dried ginseng, and packing ginseng. Patent: KR2020007333–AKR2085333–B1.

  • Yoo, S. K., Moon, J., & Ha, Y. J. (2019). Producing red ginseng acidic polysaccharide useful in food composition, comprises e.g. drying red ginseng marc, pulverizing the dried red ginseng marc, extracting, cooling extract, mixing supernatant with ethanol, an drying. Patent: KR2019091626–AKR2048623–B1.

  • Yu, C., Wen, X.-D., Zhang, Z., Zhang, C.-F., Wu, X., He, X., Liao, Y., Wu, N., Wang, C.-Z., Du, W., He, T.-C., & Yuan, C.-S. (2015). American ginseng significantly reduced the progression of high-fat-diet-enhanced colon carcinogenesis in Apc(Min/+) mice. Journal of Ginseng Research, 39(3), 230–237. https://doi.org/10.1016/j.jgr.2014.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Yang, X., Cui, B., Wang, L., & Ren, G. (2014). Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from North American ginseng. International Journal of Biological Macromolecules, 65, 357–361. https://doi.org/10.1016/j.ijbiomac.2014.01.046

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L. (2013). Efficacy of red ginseng on foot cell-associated protein nephrin in kidney of diabetic rats. Yanbian University. [In Chinese]

  • Yuan, W., Shang, X., Yang, F., Zhang, L., Wu, X., Han, Y., & Lin, N. (1992). Comparison of actions between saponins of Chinese red ginseng and Korean red ginseng on immunosuppression induced by cyclophosphosphamide. Journal of Shenyang Pharmaceutical University, 9(02), 106–110. [In Chinese].

    CAS  Google Scholar 

  • Yuan, W., Wu, X., Han, Y., Yang, F., Shang, X., Lin, N., & Zhang, L. (1982). Comparison of pharmacological effects between Chinese red ginseng and Korean red ginseng. Ginseng Research, 2, 15–18. [In Chinese].

    Google Scholar 

  • Yue, C.-Y., Wu, S., Zhou, J., Gao, X., Zhang, Y., Zhao, X.-Q., & Liu, J.-W. (2019). Study on the antioxidation of red ginseng polysaccharide in vitro. Laboratory Science, 22(1), 49–56. https://doi.org/10.3969/j.issn.1672-4305.2019.01.014 [In Chinese].

    Article  Google Scholar 

  • Zhang, N., An, X., Lang, P., Wang, F., & Xie, Y. (2019). Ginsenoside Rd contributes the attenuation of cardiac hypertrophy in vivo and in vitro. Biomedicine & Pharmacotherapy, 109, 1016–1023. https://doi.org/10.1016/j.biopha.2018.10.081

    Article  CAS  Google Scholar 

  • Zhang, T., Dong, S., Ju, Z., Zou, H., Hou, P., Diao, M., & Chen, S. (2020). Preparing ginseng comprises e.g. placing red ginseng in a pressure cooker and steaming to softening, and adding cold water, performing treatment, and preparing ultrafine red ginseng solution by colloid mill. Patent: CN111011857–A.

  • Zhang, T., Dong, S., Ju, Z., Zou, H., Zhang, Y., Zhong, W., & Yang, W. (2020). Preparing ginseng instant food comprises e.g. placing red ginseng in pressure cooker, adding cold water, beaten, preparing ultrafine red ginseng liquid by colloid mill, adding alpha-amylase, heating, adding complex enzyme, and enzymolysis. Patent: CN111011852–A.

  • Zhang, Y., Liu, Q.-Z., Xing, S.-P., & Zhang, J.-L. (2016). Inhibiting effect of endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Asian Pacific Journal of Tropical Medicine, 9(2), 178–181. https://doi.org/10.1016/j.apjtm.2016.01.010

    Article  CAS  Google Scholar 

  • Zhang, Y., Hao, Y., Yang, L.-M., Zhong, W., Liu, S.-Y., & Yue, H. (2013b). Effects of different steaming processes on ginsenosides from Ginseng Radix et Rhizoma Rubra. Chinese Journal of Experimental Traditional Medical Formulae, 19(21), 16–20. https://doi.org/10.11653/syfj2013210016

    Article  CAS  Google Scholar 

  • Zhang, N., Huang, X., Guo, Y.-L., Yue, H., Chen, C.-B., & Liu, S.-Y. (2021). Evaluation of storage period of fresh ginseng for quality improvement of dried and red processed varieties. Journal of Ginseng Research. https://doi.org/10.1016/j.jgr.2021.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J.-J., Wang, J.-Q., Xu, X.-Y., Yang, J.-Y., Wang, Z., Jiang, S., Wang, Y.-P., Zhang, J., Zhanga, R., & Li, W. (2020a). Red ginseng protects against cisplatin-induced intestinal toxicity by inhibiting apoptosis and autophagy via the PI3K/AKT and MAPK signaling pathways. Food & Function, 11(5), 4236–4248. https://doi.org/10.1039/d0fo00469c

    Article  CAS  Google Scholar 

  • Zhang, J.-Y., Zhang, X., & Li, F.-Z. (2013). Antioxidant activity of the water soluble browning reaction products isolated from red ginseng. Journal of Agricultural Science Yanbian University, 35(02), 136–140. https://doi.org/10.13478/j.cnki.jasyu.2013.02.008 [In Chinese].

    Article  Google Scholar 

  • Zhao, Y., Dai, J., Lyu, J., & Jia, T. (2014). Compare ginseng and its processed products’ effect on mice’s hypoxia and anti-fatigue function. Liaoning Journal of Traditional Chinese Medicine, 41(5), 1040–1042. https://doi.org/10.6039/j.issn.1001-0408.2017.07.23 [In Chinese].

    Article  CAS  Google Scholar 

  • Zhao, H., Xiu, Y., Jiao, L., Yu, S., & Liu, S. (2017). Study on the grading and antioxidant activity in vitro of neutral polysaccharides from white ginseng and red ginseng. China Pharmacy, 28(7), 943–947. https://doi.org/10.6039/j.issn.1001-0408.2017.07.23 [In Chinese].

    Article  Google Scholar 

  • Zhou, J. (2005). Systematic studies on quality standard and processing method of American ginseng. Heilongjiang University of Traditional Chinese Medicine. [In Chinese]

  • Zhou, F., Hu, J., Dai, N., Song, L., Lin, T., Liu, J., Li, K., Peng, Z., He, Y., & Liao, D.-F. (2020a). Berberine and ginsenoside Rg3 act synergistically via the MAPK/ERK pathway in nasopharyngeal carcinoma cells. Journal of Functional Foods, 66, 103802. https://doi.org/10.1016/j.jff.2020.103802

    Article  CAS  Google Scholar 

  • Zhou, Q.-Q., Ren, W.-M., Wang, Y.-H., Yang, D., Wang, G.-M., & Li, Y.-R. (2016). Research progress on processing drugs methods, chemical composition and pharmacological activity of red ginseng. Shanghai Journal of Traditional Chinese Medicine, 50(2), 97–100. https://doi.org/10.16305/j.1007-1334.2016.02.029 [In Chinese].

    Article  Google Scholar 

  • Zhou, Q.-L., Xu, W., & Yang, X.-W. (2016). Chemical constituents of Chinese red ginseng. China Journal of Chinese Materia Medica, 41(2), 233–249. https://doi.org/10.4268/cjcmm20160214 [In Chinese].

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Zhou, Y., & Zhou, B. (2020). Traditional Chinese medicinal composition useful for treating sequelae of cerebral concussion, comprises e.g. red ginseng, ground beetle, Angelica, medlar, processed nux vomica, hemlock parsley, sanguis draxonis and licorice. Patent: CN111228379–A.

  • Zhu, Y., Zhu, C., Yang, H., Deng, J., & Fan, D. (2020). Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacological Research, 155, 104746. https://doi.org/10.1016/j.phrs.2020.104746

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Natural Science Foundation of Shandong Province [grant number ZR2020MB009, ZR2019MB009], Key Research and Development Program of Shandong Province [grant numbers 2019GSF108089], National Natural Science Foundation of China [grant numbers 21672046, 21372054], and Found from the Huancui District of Weihai City.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Jing Li or Yan-Chao Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Ren, C., Li, HJ. et al. Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng. Food Bioprocess Technol 15, 47–71 (2022). https://doi.org/10.1007/s11947-021-02697-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02697-w

Keywords

Navigation