Skip to main content
Log in

3D Printing Complex Egg White Protein Objects: Properties and Optimization

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 03 December 2018

This article has been updated

Abstract

Three-dimensional (3D) is an emerging technique for the production of various unique and complex food items. Printing materials and recipes should be optimized to improve the quality and efficiency of 3D printing. This paper presents the development of a novel food formulation for 3D printing. This formulation is based on a complex mixture system that comprises egg white protein (EWP), gelatin, cornstarch, and sucrose. The effects of EWP addition on the rheological, lubrication, and texture properties and the microstructure of the mixture system were investigated. The results of the rheological and tribology studies show that a 5.0% (w/w) EWP mixture system is ideal for use in 3D printing. The addition of a certain concentration of EWP could improve the hardness and springiness of gel samples. The improvement in these properties facilitates the timely flow-out of the printing material from the nozzle and improves the viscosity of the printing material. The latter effect helps maintain the shape of the printing material during printing. Furthermore, the printing parameters for the optimal geometric accuracy and dimensions of the printed mixture system were determined and are 1.0 mm nozzle diameter, 70 mm/s nozzle moving speed, and 0.004 cm3/s extrusion rate. This work suggests that 3D printing based on the EWP complex system is a promising method for producing food objects with complex shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 03 December 2018

    The original version of this article unfortunately do not list the complete authors.

References

  • Aken, G. A. V. (2010). Modelling texture perception by soft epithelial surfaces. Soft Matter, 6(5), 826–834.

    Article  Google Scholar 

  • Barrese, R. (2015). Outsourcing becomes ingredient to success: Pasta maker relies on 3PL to provide a variety of special services. (Case Study: New World Pasta). (third party logistics by All Star) (Brief Article). Teaching Theology and Religion, 18, 296–300.

    Article  Google Scholar 

  • Billiet, T., Vandenhaute, M., Schelfhout, J., Van, V. S., & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26), 6020–6041.

    Article  CAS  Google Scholar 

  • Chaisawang, M., & Suphantharika, M. (2006). Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids, 20(5), 641–649.

    Article  CAS  Google Scholar 

  • Chang, C., Niu, F., Su, Y., Qiu, Y., Gu, L., & Yang, Y. (2016). Characteristics and emulsifying properties of acid and acid-heat induced egg white protein. Food Hydrocolloids, 54, 342–350.

    Article  CAS  Google Scholar 

  • Chen, J., & Stokes, J. R. (2012). Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science and Technology, 25(1), 4–12.

    Article  CAS  Google Scholar 

  • Choi, S. S., & Regenstein, J. M. (2010). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2), 194–199.

    Article  Google Scholar 

  • Dankar, I., Haddarah, A., Omar, F. E. L., Sepulcre, F., & Pujolà, M. (2018). 3D printing technology: The new era for food customization and elaboration. Trends in Food Science and Technology, 75, 231–242.

  • Das, S., Pelcastre, L., Hardell, J., & Prakash, B. (2013). Effect of static and dynamic ageing on wear and friction behavior of aluminum 6082 alloy. Tribology International, 60(7), 1–9.

    Article  CAS  Google Scholar 

  • Fitzpatrick, P., Meadows, J., Ratcliffe, I., & Williams, P. A. (2013). Control of the properties of xanthan/glucomannan mixed gels by varying xanthan fine structure. Carbohydrate Polymers, 92(2), 1018–1025.

    Article  CAS  Google Scholar 

  • Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44–54.

    Article  Google Scholar 

  • Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240–3253.

    Article  CAS  Google Scholar 

  • Hao, L., Mellor, S., Seaman, O., Henderson, J., Sewell, N., & Sloan, M. (2010). Material characterisation and process development for chocolate additive layer manufacturing. Virtual and Physical Prototyping, 5(2), 57–64.

    Article  Google Scholar 

  • Hao, Y., Wang, F., Huang, W., Tang, X., Zou, Q., Li, Z., & Ogawa, A. (2016). Sucrose substitution by polyols in sponge cake and their effects on the foaming and thermal properties of egg protein. Food Hydrocolloids, 57, 153–159.

    Article  CAS  Google Scholar 

  • Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12–19.

    Article  CAS  Google Scholar 

  • Hu, Y., Liang, H., Xu, W., Wang, Y., An, Y., Yan, X., Ye, S., Huang, Q., Liu, J., & Li, B. (2016). Synergistic effects of small amounts of konjac glucomannan on functional properties of egg white protein. Food Hydrocolloids, 52(3), 213–220.

    Article  CAS  Google Scholar 

  • Huang, T., Tu, Z. C., Wang, H., Shangguan, X., Zhang, L., Niu, P., & Sha, X. M. (2017). Promotion of foam properties of egg white protein by subcritical water pre-treatment and fish scales gelatin. Colloids and Surfaces A Physicochemical and Engineering Aspects, 512, 171–177.

    Article  CAS  Google Scholar 

  • Ivanova, O., Williams, C., & Campbell, T. (2013). Additive manufacturing (am) and nanotechnology: Promises and challenges. Rapid Prototyping Journal, 19(5), 353–364.

    Article  Google Scholar 

  • Kalsoom, U., Nesterenko, P. N., & Paull, B. (2016). Recent developments in 3d printable composite materials. RSC Advances, 6(65), 60355–60371.

    Article  CAS  Google Scholar 

  • Kjeldskov, J., Nielsen, T. S., Skov, M. B., & Paay, J. (2014). EyeGaze: enabling eye contact over video. International Working Conference on Advanced Visual Interfaces, 105–112.

  • Kruif, C. G. D., & Tuinier, R. (2001). Polysaccharide protein interactions. Food Hydrocolloids, 15(4), 555–563.

    Article  Google Scholar 

  • Lam, C. X. F., Mo, X. M., Teoh, S. H., & Hutmacher, D. W. (2002). Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 20(1-2), 49–56.

    Article  Google Scholar 

  • Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. Journal of Food Engineering, 215, 13–22.

    Article  CAS  Google Scholar 

  • Lassé, M., Deb-Choudhury, S., Haines, S., Larsen, N., Gerrard, J. A., & Dyer, J. M. (2015). The impact of pH, salt concentration and heat on digestibility and amino acid modification in egg white protein. Journal of Food Composition and Analysis, 38, 42–48.

    Article  Google Scholar 

  • Li, H., Zhao, L., Chen, X. D., & Mercadé-Prieto, R. (2016). Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures. International Journal of Biological Macromolecules, 83, 152–159.

    Article  CAS  Google Scholar 

  • Lipton, J. I., Cutler, M., Nigl, F., Dan, C., & Lipson, H. (2015). Additive manufacturing for the food industry. Trends in Food Science and Technology, 43(1), 114–123.

    Article  CAS  Google Scholar 

  • Liu, H. B., Liu, J., & Wang, L. (2008). Searching maximum quasi-bicliques from protein-protein interaction network. Journal of Biomedical Science and Engineering, 1(3), 200–203.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83–94.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering, 220, 76–82.

    Article  Google Scholar 

  • Majumdar, S., Trujilloreyes, J., Hernandezviezcas, J. A., White, J. C., Peraltavidea, J. R., & Gardeatorresdey, J. L. (2016). Cerium biomagnification in a terrestrial food chain: Influence of particle size and growth stage. Environmental Science and Technology, 50, 67–82.

    Article  Google Scholar 

  • Mantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3d printing by correlating thermal and flow properties with 3d structure modeling. Innovative Food Science & Emerging Technologies, 44, 21–29.

    Article  Google Scholar 

  • Nguyen, P. T. M., Bhandari, B., & Prakash, S. (2016). Tribological method to measure lubricating properties of dairy products. Journal of Food Engineering, 168, 27–34.

    Article  Google Scholar 

  • Ninan, G., Joseph, J., & Aliyamveettil, Z. A. (2014). A comparative study on the physical, chemical and functional properties of carp skin and mammalian gelatins. Journal of Food Science and Technology, 51(9), 2085–2091.

    Article  CAS  Google Scholar 

  • Phillips, G. O., & Williams, P. A. (2011). Introduction to food proteins. In Handbook of food proteins (p. 1). Woodhead Publishing.

  • Prakash, S., Tan, D. D. Y., & Chen, J. (2013). Applications of tribology in studying food oral processing and texture perception. Food Research International, 54(2), 1627–1635.

    Article  Google Scholar 

  • Raikos, V., Campbell, L., & Euston, S. R. (2007a). Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International, 40(3), 347–355.

    Article  CAS  Google Scholar 

  • Raikos, V., Campbell, L., & Euston, S. R. (2007b). Rheology and texture of hen's egg protein heat-set gels as affected by pH and the addition of sugar and/or salt. Food Hydrocolloids, 21(2), 237–244.

    Article  CAS  Google Scholar 

  • Scaraggi, M., & Persson, B. N. J. (2014). Theory of viscoelastic lubrication. Tribology International, 72(4), 118–130.

    Article  Google Scholar 

  • Selway, N., & Stokes, J. R. (2013). Insights into the dynamics of oral lubrication and mouthfeel using soft tribology: Differentiating semi-fluid foods with similar rheology. Food Research International, 54(1), 423–431.

    Article  Google Scholar 

  • Shiroodi, S. G., Rasco, B. A., & Lo, Y. M. (2015). Influence of xanthan–curdlan hydrogel complex on freeze-thaw stability and rheological properties of whey protein isolate gel over multiple freeze-thaw cycle. Journal of Food Science, 80(7), E1498–E1505.

    Article  CAS  Google Scholar 

  • Spotti, M. J., Perduca, M. J., Piagentini, A., Santiago, L. G., Rubiolo, A. C., & Carrara, C. R. (2013). Gel mechanical properties of milk whey protein–dextran conjugates obtained by Maillard reaction. Food Hydrocolloids, 3(1), 26–32.

    Article  Google Scholar 

  • Sun, J., Peng, Z., Yan, L., Fuh, J., & Hong, G. S. (2015a). 3d food printing—An innovative way of mass customization in food fabrication. International Journal of Bioprinting, 1(1), 27–38.

    Google Scholar 

  • Sun, J., Peng, Z., Zhou, W., Fuh, J. Y. H., Hong, G. S., & Chiu, A. (2015b). A review on 3D printing for customized food fabrication. Procedia Manufacturing, 1, 308–319.

    Article  Google Scholar 

  • Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., & Hong, G. S. (2015c). An overview of 3d printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615.

    Article  CAS  Google Scholar 

  • Tohic, C. L., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kerry, J. P., & Kelly, A. L. (2017). Effect of 3d printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56–64.

    Article  Google Scholar 

  • Upadhyay, R., Brossard, N., & Chen, J. (2016). Mechanisms underlying astringency: Introduction to an oral tribology approach. Journal of Physics D Applied Physics, 49(10), 104003.

    Article  Google Scholar 

  • Vogeler, F., Verheecke, W., Voet, A., & Valkenaers, H. (2013). An initial study of aerosol jet® printed interconnections on extrusion-based 3d-printed substrates. Journal of Mechanical Engineering, 59(11), 689–696.

    Article  Google Scholar 

  • Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2017). Investigation on fish surimi gel as promising food material for 3d printing. Journal of Food Engineering, 220, 101–108.

    Article  Google Scholar 

  • Wegrzyn, T. F., Golding, M., & Archer, R. H. (2012). Food layered manufacture: A new process for constructing solid foods. Trends in Food Science and Technology, 27(2), 66–72.

    Article  CAS  Google Scholar 

  • Wu, Y., Wu, X., Yao, L., Xue, Z., Wu, C., Zhou, H., & Cen, K. (2017). Simultaneous particle size and 3d position measurements of pulverized coal flame with digital inline holography. Fuel, 195, 12–22.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3d printing of shape memory polymer for functional part fabrication. International Journal of Advanced Manufacturing Technology, 84(9–12), 2079–2095.

    Article  Google Scholar 

  • Yang, F., Zhang, M., & Bhandari, B. (2017). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14), 3145–3153.

    Article  Google Scholar 

  • Yun, L., Man, L., Ke-Xue, Z., Xiao-Na, G., Wei, P., & Hui-Ming, Z. (2016). Heat-induced interaction between egg white protein and wheat gluten. Food Chemistry, 197, 699–708.

    Article  Google Scholar 

  • Zhou, P., Guo, M., Liu, D., Liu, X., & Labuza, T. P. (2013). Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems. Journal of Food Science, 78(3), C437–C444.

    Article  CAS  Google Scholar 

  • Zhu, Y., Bhandari, B., & Prakash, S. (2018). Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocolloids, 84, 292–302.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Bhesh Bhandari and Dr. Sangeeta Prakash for their valuable comments and discussion.

Funding

This study was supported by Natural Science Foundation of China (No. U1704114), and Key Scientific Research Program of Henan Province (No.161100110900, 161100110600-2, and 161100110700-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Liu or Yang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Meng, Y., Dai, X. et al. 3D Printing Complex Egg White Protein Objects: Properties and Optimization. Food Bioprocess Technol 12, 267–279 (2019). https://doi.org/10.1007/s11947-018-2209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2209-z

Keywords

Navigation