Skip to main content
Log in

Application and Simplification of Cell-Based Equivalent Circuit Model Analysis of Electrical Impedance for Assessment of Drop Shock Bruising in Japanese Pear Tissues

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study was conducted with the objective of applying cell-based electrical equivalent circuit analysis for the assessment of bruising of tissues in Japanese pears after drop tests, as well as to simplify the analysis. The equivalent circuit analysis of electrical impedance values was conducted on the bruised regions of the pear tissues. The analysis showed that the resistance of the protoplasm of the injured tissues slightly increases, and the capacitance of cell membranes and the resistance of apoplastic fluids significantly decrease. Thus, it was theorized that these parameters are influenced by cell membrane destruction. Further, it was found that Cole-Cole plot parameter obtained from the frequency characteristics of the impedance of the tissues can express changes in the apoplastic fluid resistance. These results show that equivalent circuit analysis can be used to assess bruising of pear cells caused by drop shock, and the analysis can be simplified using Cole-Cole plots. We expect these results to aid in the development of physical damage assessment methods for distributed fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

EIS:

Electrical impedance spectroscopy

LTO:

Length of a coordinate at the top of the circular arc of Cole-Cole plots from the origin

References

  • Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121, 24–31.

    Article  Google Scholar 

  • Angersbach, A., Heinz, V., & Knorr, D. (1999). Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnology Progress, 15(4), 753–762.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., Ruiz, M., Lu, F., & Kader, A. A. (1987). Study of impact and compression damage on Asian pears. Transactions of ASAE, 30(4), 1193–1197.

    Article  CAS  Google Scholar 

  • Cole, K. S. (1932). Electric phase angle of cell membranes. The Journal of General Physiology, 15(6), 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, M. A., Zhang, M. I. N., & Willison, J. H. M. (1993). Apple bruise assessment through electrical impedance measurements. Journal of Horticultural Science, 68(3), 393–398.

    Article  Google Scholar 

  • Du, J., Gemma, H., & Iwahori, S. (1997). Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society for Horticultural Science, 66(1), 15–22.

    Article  CAS  Google Scholar 

  • Eissa, A., & Hafiz, A. (2012). Comparison of package cushioning materials to protect vibration damage to golden delicious apples. International Journal of Latest Trends in Agriculture and Food Sciences, 2, 36–58.

    Google Scholar 

  • Hayden, R. I., Moyse, C. A., Calder, R. W., Crawford, D. P., & Fensom, D. S. (1969). Electrical impedance studies on potato and alfalfa tissue. Journal of Experimental Botany, 20(2), 177–200.

    Article  Google Scholar 

  • Itai, A., & Tanahashi, T. (2008). Inhibition of sucrose loss during cold storage in Japanese pear (Pyrus pyrifolia Nakai) by 1-MCP. Postharvest Biology and Technology, 48(3), 355–363.

    Article  CAS  Google Scholar 

  • Jackson, P. J., & Harker, F. R. (2000). Apple bruise detection by electrical impedance measurement. HortScience, 35(1), 104–107.

    Google Scholar 

  • Kabas, O., Celik, H. K., Ozmerzi, A., & Akinci, I. (2008). Drop test simulation of a sample tomato with finite element method. Journal of the Science of Food and Agriculture, 88(9), 1537–1541.

    Article  CAS  Google Scholar 

  • Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289–305.

    Article  CAS  PubMed  Google Scholar 

  • Mohsenin, N. N. (1970). Physical properties of plant and animal materials. Vol. 1. Structure, Physical Characteristics and Mechanical Properties, 1, 481–615.

    Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Paz, P., Sánchez, M. T., Pérez-Marín, D., Guerrero, J. E., & Garrido-Varo, A. (2009). Instantaneous quantitative and qualitative assessment of pear quality using near infrared spectroscopy. Computers and Electronics in Agriculture, 69(1), 24–32.

    Article  Google Scholar 

  • Pliquett, U. (2010). Bioimpedance: a review for food processing. Food Engineering Reviews, 2(2), 74–94.

    Article  CAS  Google Scholar 

  • Saito, K., Kubo, M., & Liu, G. (1998). Shock received by cargo during transportation by overnight small parcel delivery services. Journal of Packaging Science and Technology, Japan, 7, 23–33.

    Google Scholar 

  • Singh, J., Singh, S. P., Voss, T., & Saha, K. (2009). A study of the effect of pictorial markings and warning labels on handling of packages in the DHL single‐parcel environment. Packaging Technology and Science: An International Journal, 22(1), 1–8.

    Article  Google Scholar 

  • Tsukamoto, M. (1981). Studies on the mechanical injury of fruit III. The resistivities of fruits of Japanese pear and oriental persimmon to impact and compression. Journal of the Japanese Society for Horticultural Science, 49(4), 576–582.

    Article  Google Scholar 

  • Vozary, E., Laslo, P., & Zsivanovits, G. (1999). Impedance parameter characterizing apple bruise. Annals of the New York Academy of Sciences, 873, 421–429.

    Article  Google Scholar 

  • Vursavuş, K., & Özgüven, F. (2004). Mechanical behaviour of apricot pit under compression loading. Journal of Food Engineering, 65(2), 255–261.

    Article  Google Scholar 

  • Walker, F. D., & Takenaka, T. (1965). Electric impedance of neuroglia in vitro. Experimental Neurology, 11(3), 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, T., Orikasa, T., Shono, H., Koide, S., Ando, Y., Shiina, T., & Tagawa, A. (2016). The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach. Journal of Food Engineering, 168, 113–118.

    Article  Google Scholar 

  • Watanabe, T., Ando, Y., Orikasa, T., Shiina, T., & Kohyama, K. (2017). Effect of short time heating on the mechanical fracture and electrical impedance properties of spinach (Spinacia oleracea L.). Journal of Food Engineering, 194, 9–14.

    Article  Google Scholar 

  • Zdunek, A., Kozioł, A., Pieczywek, P. M., & Cybulska, J. (2014). Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food and Bioprocess Technology, 7(12), 3525–3535.

    Article  CAS  Google Scholar 

  • Zoltowski, P. (1998). On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Journal of Electroanalytical Chemistry, 443(1), 149–154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Nakamura, N., Ando, Y. et al. Application and Simplification of Cell-Based Equivalent Circuit Model Analysis of Electrical Impedance for Assessment of Drop Shock Bruising in Japanese Pear Tissues. Food Bioprocess Technol 11, 2125–2129 (2018). https://doi.org/10.1007/s11947-018-2173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2173-7

Keywords

Navigation