Skip to main content
Log in

Bioplastics of Native Starches Reinforced with Passion Fruit Peel

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Industrial passion fruit juice production generates a large amount of passion fruit waste, which contains about 60% of fibers when dried and could be used as reinforcement of thermoplastic starch. This study aimed to develop an extruded starchy bioplastic reinforced with passion fruit peel (Pfp) (0, 4, 10, 16, and 20%), glycerol (60, 64, 70, 76, and 80 wt%), and starch mix (55% corn and 45% cassava) that were processed at varied screw speeds (66, 80, 100, 120, and 134 rpm). The response surface methodology was applied to analyze the effects of Pfp, glycerol, and screw speed. Mechanical properties, contact angle, and water permeability and solubility were the response variables. Addition of Pfp, up to 4%, improved the bioplastic mechanical properties. High addition of Pfp (16 and 20%) combined with the lowest screw speed (66 rpm) reduced bioplastic water solubility. Water vapor permeability slightly increased with the combination of increasing glycerol content and screw speed. Contact angle was not statically affected by the independent variables. The extrusion showed as an interesting tool that provided greater homogeneity of Pfp incorporated in starch bioplastic, though the mix would benefit from finer Pfp particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agustiniano-Osornio, J. C., Gonzalez-Soto, R. A., Flores-Huicochea, E., Manrique-Quevedo, N., & Sanchez-Hernandez & Bello-Perez L.A. (2005). Resistant starch production from mango starch using a single-screw extruder. Journal of the Science of Food and Agriculture, 85(12), 2105–2110.

    Article  CAS  Google Scholar 

  • Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(8), 941–946.

    Article  CAS  Google Scholar 

  • AOAC (2010). Fruits and Fruit Products.Official Methods of Analysis of the Association of Analytical Chemists International (17th ed.). Gaithersburg, ML: AOAC.

  • Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(7), 839–848.

    Article  CAS  Google Scholar 

  • ASTM. (2001). ASTM D882-00 standard test method for tensile properties of thin plastic sheeting. West Conshohocken, USA: American Society for Testing and Materials Available at: http://www.astm.org/DATABASE.CART/HISTORICAL/D882-00.htm. Accessed 20 August 2012.

    Google Scholar 

  • Bangyekan, C., Aht-Ong, D., & Srikulkit, K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1), 61–71.

    Article  CAS  Google Scholar 

  • Bodros, E., Pillin, I., Montrelay, N., & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology, 67(3), 462–470.

    Article  CAS  Google Scholar 

  • Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch chitosan blend biodegradable film. Food Science and Technology, 41(15), 1633–1641.

    CAS  Google Scholar 

  • Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475.

    Article  Google Scholar 

  • Brandão, E. M., & Andrade, C. T. (1999). Influência de fatores estruturais no processo de gelificação de pectinas de alto grau de metoxilação. Polímeros, 9(3), 38–44.

    Article  Google Scholar 

  • Cao, X., Chen, Y., Chang, P. R., Stumborg, M., & Huneault, M. A. (2008). Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science, 109(37), 3804–3810.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicent, A. A. (2012). Effects of interactions between the constituents of chitosan-edible films on their physical properties. Food Bioprocess Technology, 5(20), 3181–3192.

    Article  CAS  Google Scholar 

  • Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010a). Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, 120(6), 736–740.

    Article  CAS  Google Scholar 

  • Chang, P. R., Jian, R., Zheng, P., Yu, J., & Ma, X. (2010b). Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), 301–305.

    Article  CAS  Google Scholar 

  • Chen, B., & Evans, J. R. G. (2005). Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydrate Polymers, 61(3), 455–463.

    Article  CAS  Google Scholar 

  • Chen, C. H., & Lai, L. S. (2008). Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids, 22(14), 1584–1595.

    Article  CAS  Google Scholar 

  • Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W., & Wang, P. (2008). Effect of acetylation on the properties of corn starch. Food Chemistry, 106(9), 923–928.

    Article  CAS  Google Scholar 

  • Chivrac, F., Gueguen, O., Pollet, E., Ahzi, S., Makradi, A., & Averous, L. (2008). Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomaterialia, 4(15), 1707–1714.

    Article  CAS  Google Scholar 

  • Dean, K. M., Do, M. D., Petinakis, E., & Yu, L. (2008). Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites. Composites Science and Technology, 68(10), 1453–1462C.

    Article  CAS  Google Scholar 

  • Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51(2), 213–219.

    Article  CAS  Google Scholar 

  • Enrione, J., Osorio, F., Pedreschi, F., & Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technology, 3(7), 791–796.

    Article  CAS  Google Scholar 

  • Fakhouri, F. M., Fontes, L. C. B., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2009). Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Starch/Stärke, 61(4), 528–536.

    Article  CAS  Google Scholar 

  • Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Collares-Queiroz, F. P., & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers., 95(2), 681–689.

    Article  CAS  Google Scholar 

  • Fishman, M. L., Coffin, D. R., Onwulata, C. I., & Konstance, R. P. (2004). Extrusion of pectin and glycerol with various combinations of orange albedo and starch. Carbohydrate Polymers, 57(3), 401–413.

    Article  CAS  Google Scholar 

  • Galdeano, M. C., Grossmann, M. V. E., Mali, S., Bello-Perez, L. A., Garcia, L. A., & Zamudio-Flores, P. B. (2009). Effects of production process and plasticizers on stability of films and sheets of oat starch. Materials Science and Engineering, 29(3), 492–498.

    Article  CAS  Google Scholar 

  • Garcia, T. G., Martinez-Bustos, F., Jimenez-Arevalo, A. O., Arencon, D., Games-Perez, J., & Martinez, A. B. (2012). Films of native and modified starch reinforced with fiber: influence of some extrusion variables using response surface methodology. Journal of Applied Polymer Science, 126, E326–E335.

    Google Scholar 

  • Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11(6), 697–702.

    Article  CAS  Google Scholar 

  • Gontard, N., Guilbert, S., & Cuq, J. L. (1992). Edible wheat gluten films: influence of the main processes variables on films properties using response surface methodology. Journal of Food Science, 57(1), 190–195.

    Article  CAS  Google Scholar 

  • Gontard, N., Guilbert, S., & Cuq, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten films. Journal of Food Science, 58(1), 206–211.

    Article  CAS  Google Scholar 

  • Han, Y., Manolach, S. O., Denes, F., & Rowell, R. M. (2011). Cold plasma treatment on starch foam reinforced with wood fiber for its surface hydrophobicity. Carbohydrate Polymers, 86(9), 1031–1037.

    Article  CAS  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(2), 302–310.

    Article  Google Scholar 

  • Kaushika, A., Singh, M., & Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82(2), 337–345.

    Article  Google Scholar 

  • Kristo, E., & Biliaderis, C. G. (2007). Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 68(1), 146–158.

    Article  CAS  Google Scholar 

  • Kulkarni, S. G., & Vijayanand, P. (2010). Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.) LWT - Food Science and Technology, 43(7), 1026–1031.

    Article  CAS  Google Scholar 

  • Ma, X., Chang, P. R., Yang, J., & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymers, 75(3), 472–478.

    Article  CAS  Google Scholar 

  • Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19(1), 157–164.

    Article  CAS  Google Scholar 

  • Martucci, J. F., & Ruseckaite, R. A. (2009). Tensile properties, barrier properties, and biodegradation in soil of compression molded gelatin-dialdehyde starch films. Journal of Applied Polymer Science, 112(20), 2166–2178.

    Article  CAS  Google Scholar 

  • Muller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(12), 1328–1333.

    Article  Google Scholar 

  • Nascimento, T. A., Calado, V. M. A., & Carvalho, C. W. P. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International., 49(1), 588–595.

    Article  CAS  Google Scholar 

  • Ortiz, J. A. R., Carvalho, C. W. P., Ascheri, D. P. R., Ascheri, J. L. R., & Andrade, C. T. (2010). Effect of sugar and water contents on non-expanded cassava flour extrudates. Food and Science Technology [Ciencia e Tecnologia de Alimentos], 30(1), 205–212.

    Article  Google Scholar 

  • Ramaraj, B. (2007). Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. Journal of Applied Polymer Science, 103(8), 906–916.

    Google Scholar 

  • Rocha G.O., Farias M.G., Carvalho C.W.P., Ascheri JLR & Galdeano MC (2014). Filmes compostos biodegradáveis a base de amido de mandioca e proteína de soja. Polímeros 24(5), 587–595.

  • Róz, A. L. D., Veiga-Santos, P., Ferreira, A. M., Antunes, T. C. R., de Leite, F. L., Yamaji, F. M. A., & de Carvalho, J. F. (2016). Water susceptibility and mechanical properties of thermoplastic starch–pectin blends reactively extruded with edible citric acid. Materials Research, 19(1), 138–142.

    Article  Google Scholar 

  • Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24(2), 285–290.

    Article  CAS  Google Scholar 

  • Silva, W. A., Pereira, J., Carvalho, C. W. P., & Ferrua, F. Q. (2007). Determination of color, topographic superficial image and contact angle of the biofilms of different starch sources. Ciência e Agrotecnologia, 31(1), 154–163.

    Article  Google Scholar 

  • Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7–16.

    Article  CAS  Google Scholar 

  • Teixeira, E. M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422–431.

    Article  CAS  Google Scholar 

  • The, D. P., Debeaufort, F., Voilley, A., & Luu, D. (2009). Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. Journal of Food Engineering, 90(4), 548–558.

    Article  CAS  Google Scholar 

  • Vargas-Solórzano, J. W., Carvalho, C. W. P., Ascheri, J. L. R., Takeiti, C. Y., & Queiroz, V. A. V. (2014). Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International, 55(1), 37–44.

    Article  Google Scholar 

  • Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., & Scamparini, A. R. P. (2007). Sucrose and inverted sugar as plasticizer. effect on cassava starch–gelatin film mechanical properties, hydrophilicity and water activity. Food Chemistry, 103(3), 255–262.

    Article  CAS  Google Scholar 

  • Wan, Y. Z., Honglin, L., He, F., Liang, H., Huang, Y., & Li, X. L. (2009). Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology, 69(10), 1212–1217.

    Article  CAS  Google Scholar 

  • Wang, L., Liu, L., Holmes, J., Kerry, J. F., & Kerry, J. P. (2007). Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. International Journal of Food Science and Technology, 42(8), 1128–1138.

    Article  CAS  Google Scholar 

  • Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76(2), 299–304.

    Article  CAS  Google Scholar 

  • Zamudio-Flores, P. B., Bautista-Baños, S., Salgado-Delgado, R., & Bello-Perez, L. R. (2009). Effect of oxidation level on the dual modification of banana starch: the mechanical and barrier properties of its films. Journal of Applied Polymer Science, 112(7), 822–829.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Han, J. H. (2008). Sorption isotherm and plasticization effect of moisture and plasticizers in pea starch film. Journal of Food Science, 73(7), E313–E324.

    Article  CAS  Google Scholar 

  • Zhang, S. D., Zhang, Y. R., Zhu, J., Wang, X. L., Yang, K. K., & Wang, Y. Z. (2007). Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch/Stärke, 59(2), 258–268.

    Article  CAS  Google Scholar 

  • Zhou, J., Ma, Y., Ren, L., Tong, J., Liu, Z., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydrate Polymers, 76(6), 632–638.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the CAPES and CNPq for the scholarships and the FAPERJ for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. R. Ascheri.

Ethics declarations

Conflict of Interest

The authors attest that there are no interests that competed with the objective, interpretation, and presentation of the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moro, T.M.A., Ascheri, J.L.R., Ortiz, J.A.R. et al. Bioplastics of Native Starches Reinforced with Passion Fruit Peel. Food Bioprocess Technol 10, 1798–1808 (2017). https://doi.org/10.1007/s11947-017-1944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1944-x

Keywords

Navigation