Skip to main content
Log in

Effects of Vacuum Impregnation with Calcium Lactate and Pectin Methylesterase on Quality Attributes and Chelate-Soluble Pectin Morphology of Fresh-Cut Papayas

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Vacuum impregnation was used to improve the quality attributes of fresh-cut papayas. Vacuum pressure of 5 kPa was applied for 5 min, then calcium lactate (1%, w/w) and pectin methylesterase (PME) (15 U/ml), alone and in combinations (calcium lactate plus PME), were vacuum impregnated into fresh-cut papaya cubes. Papaya cubes were stored at 4 °C, and the quality of fresh-cut papaya was studied at intervals for 8 days. The hardness and chewiness levels of fresh-cut papayas that were treated with calcium lactate and PME were 8.02 and 7.83 times of untreated fresh-cut papayas at day 8, respectively. After vacuum impregnation, colour of fresh-cut papayas changed significantly (P < 0.05) and an overall weight loss was observed as well. Chelate-soluble pectin (CSP) was extracted and its content correlated well with texture properties of fresh-cut papayas. Qualitative and quantitative analyses of CSP were conducted using atomic force microscopy. The proportion of chain widths greater than 45 nm had increased 35.0% in fresh-cut papayas vacuum impregnated with calcium lactate and PME at the end of storage. The results indicate that a combination of calcium ions and PME was able to maximally preserve the quality attributes of fresh-cut papayas and extend the shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, E. L., Kroon, P. A., Williamson, G., & Morris, V. J. (2003). Characterisation of heterogeneous arabinoxylans by direct imaging of individual molecules by atomic force microscopy. Carbohydrate Research, 338(8), 771–780.

    Article  CAS  Google Scholar 

  • Anjongsinsiri, P. B., Kenney, J., & Wicker, L. (2004). Detection of vacuum infusion of pectinmethylesterase in strawberry by activity staining. Journal of Food Science, 69(3), FCT179–FCT183.

    Google Scholar 

  • Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515–532.

    Article  CAS  Google Scholar 

  • Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33(2), 103–119.

    Article  CAS  Google Scholar 

  • Canizares, D., & Mauro, M. A. (2015). Enhancement of quality and stability of dried papaya by pectin-based coatings as air-drying pretreatment. Food and Bioprocess Technology, 8(6), 1187–1197.

    Article  CAS  Google Scholar 

  • Chávez-Sánchez, I., Carrillo-López, A., Vega-García, M., & Yahia, E. M. (2013). The effect of antifungal hot-water treatments on papaya postharvest quality and activity of pectinmethylesterase and polygalacturonase. Journal of Food Science and Technology, 50(1), 101–107.

    Article  Google Scholar 

  • Chen, F., Zhang, L., An, H., Yang, H., Sun, X., Liu, H., Yao, Y., & Li, L. (2009). The nanostructure of hemicellulose of crisp and soft Chinese cherry (Prunus pseudocerasus L.) cultivars at different stages of ripeness. LWT - Food Science and Technology, 42(1), 125–130.

    Article  CAS  Google Scholar 

  • Chen, Y., Chen, F., Lai, S., Yang, H., Liu, H., Liu, K., Bu, G., & Deng, Y. (2013). In vitro study of the interaction between pectinase and chelate-soluble pectin in postharvest apricot fruits. European Food Research and Technology, 237(6), 987–993.

    Article  CAS  Google Scholar 

  • Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67(1), 167–177.

    Article  Google Scholar 

  • Chong, J. X., Lai, S., & Yang, H. (2015). Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocolloids, 45, 72–82.

    Article  Google Scholar 

  • Culver, C. A., Bjurlin, M. A., & Fulcher, R. G. (2000). Visualizing enzyme infusion into apple tissue. Journal of Agricultural and Food Chemistry, 48(12), 5933–5935.

    Article  CAS  Google Scholar 

  • Derossi, A., Pilli, T. D., & Severini, C. (2013). Application of vacuum impregnation techniques to improve the pH reduction of vegetables: study on carrots and eggplants. Food and Bioprocess Technology, 6(11), 3217–3226.

    Article  CAS  Google Scholar 

  • Feng, X., Lai, S., Li, M., Fu, C., Chen, F., & Yang, H. (2014). Application of atomic force microscopy in food-related macromolecules. In H. Yang (Ed.), Atomic force microscopy (AFM): principles, modes of operation and limitations. Hauppauge, NY: Nova Science Publishers, Inc..

    Google Scholar 

  • Fito, P., Chiralt, A., Barat, J. M., Andrés, A., Martínez-Monzó, J., & Martínez-Navarrete, N. (2001). Vacuum impregnation for development of new dehydrated products. Journal of Food Engineering, 49(4), 297–302.

    Article  Google Scholar 

  • Fraeye, I., Knockaert, G., Van Buggenhout, S., Duvetter, T., Hendrickx, M., & Van Loey, A. (2010). Enzyme infusion prior to thermal/high pressure processing of strawberries: mechanistic insight into firmness evolution. Innovative Food Science and Emerging Technologies, 11(1), 23–31.

    Article  CAS  Google Scholar 

  • Gayosso-García Sancho, L. E., Yahia, E. M., & González-Aguilar, G. A. (2011). Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L. cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Research International, 44(5), 1284–1291.

    Article  Google Scholar 

  • Guillemin, A., Guillon, F., Degraeve, P., Rondeau, C., Devaux, M.-F., Huber, F., Badel, E., Saurel, R., & Lahaye, M. (2008). Firming of fruit tissues by vacuum-infusion of pectin methylesterase: visualisation of enzyme action. Food Chemistry, 109(2), 368–378.

    Article  CAS  Google Scholar 

  • Hodges, D. M., Forney, C. F., & Wismer, W. (2000). Processing line effects on storage attributes of fresh-cut spinach leaves. Hortscience, 35(7), 1308–1311.

    CAS  Google Scholar 

  • Karakurt, Y., & Huber, D. J. (2003). Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biology and Technology, 28(2), 219–229.

    Article  CAS  Google Scholar 

  • Lara, I., Garcia, P., & Vendrell, M. (2004). Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.) fruit. Postharvest Biology and Technology, 34(3), 331–339.

    Article  CAS  Google Scholar 

  • Li, M., Chen, F., Yang, B., Lai, S., Yang, H., Liu, K., Bu, G., & Deng, Y. (2015). Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chemistry, 167, 168–174.

    Article  CAS  Google Scholar 

  • Liu, H., Chen, F., Yang, H., Yao, Y., Gong, X., Xin, Y., & Ding, C. (2009). Effect of calcium treatment on nanostructure of chelate-soluble pectin and physicochemical and textural properties of apricot fruits. Food Research International, 42(8), 1131–1140.

    Article  CAS  Google Scholar 

  • Liu, H., Chen, F., Lai, S., Tao, J., Yang, H., & Jiao, Z. (2017). Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca). Food Chemistry, 225, 87–97.

    Article  CAS  Google Scholar 

  • Liu, Q., Tan, C. S. C., Yang, H., & Wang, S. (2016). Treatment with low-concentration acidic electrolysed water combined with mild heat to sanitise fresh organic broccoli (Brassica oleracea). LWT-Food Science and Technology. doi:10.1016/j.lwt.2016.11.012.

    Google Scholar 

  • Manrique, G. D., & Lajolo, F. M. (2004). Cell-wall polysaccharide modifications during postharvest ripening of papaya fruit (Carica papaya). Postharvest Biology and Technology, 33, 11–26.

  • Mao, J., Zhang, L., Chen, F., Lai, S., Yang, B., & Yang, H. (2016). Effect of vacuum impregnation combined with calcium lactate on the firmness and polysaccharide morphology of Kyoho grapes (Vitis vinifera × V. labrusca). Food and Bioprocess Technology. doi:10.1007/s11947-016-1852-5.

    Google Scholar 

  • Martin-Diana, A. B., Rico, D., Frias, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. Trends in Food Science & Technology, 18(4), 210–218.

    Article  CAS  Google Scholar 

  • Ornelas-Paz, J. D. J., Yahia, E. M., & Gardea, A. A. (2008). Changes in external and internal color during postharvest ripening of ‘manila’ and ‘Ataulfo’ mango fruit and relationship with carotenoid content determined by liquid chromatography–APcI+−time-of-flight mass spectrometry. Postharvest Biology and Technology, 50(2), 145–152.

    Article  CAS  Google Scholar 

  • Perez-Cabrera, L., Chafer, M., Chiralt, A., & Gonzalez-Martinez, C. (2011). Effectiveness of antibrowning agents applied by vacuum impregnation on minimally processed pear. LWT-Food Science and Technology, 44(10), 2273–2280.

    Article  CAS  Google Scholar 

  • Sancho, L. E. G.-G., Yahia, E. M., García-Solís, P., & González-Aguilar, G. A. (2014). Inhibition of proliferation of breast cancer cells MCF7 and MDA-MB-231 by lipophilic extracts of papaya (Carica papaya L. Var. Maradol) fruit. Food and Nutrition Sciences, 5(21), 2097–2103.

    Article  CAS  Google Scholar 

  • Shih, M. C., Yang, K. T., & Kuo, S. J. (2002). Quality and antioxidative activity of black soybean tofu as affected by bean cultivar. Journal of Food Science, 67(2), C480–C484.

  • Sirijariyawat, A., Charoenrein, S., & Barrett, D. M. (2012). Texture improvement of fresh and frozen mangoes with pectin methylesterase and calcium infusion. Journal of the Science of Food and Agriculture, 92(13), 2581–2586.

    Article  CAS  Google Scholar 

  • Talens, P., Martínez-Navarrete, N., Fito, P., & Chiralt, A. (2002). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3(2), 191–199.

    Article  Google Scholar 

  • Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14.

    Article  CAS  Google Scholar 

  • Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects of calcium chloride and calcium lactate applications with osmotic pretreatment on physicochemical aspects and consumer acceptances of dried papaya. International Journal of Food Science & Technology, 49(4), 1122–1131.

    Article  CAS  Google Scholar 

  • Wakabayashi, K. (2000). Changes in cell wall polysaccharides during fruit ripening. Journal of Plant Research, 113(3), 231–237.

    Article  CAS  Google Scholar 

  • Xin, Y., Chen, F., Yang, B., Yang, H., Zhang, P., & Deng, Y. (2010). Morphology, profile and role of chelate-soluble pectin on tomato properties during ripening. Food Chemistry, 121(2), 372–380.

    Article  CAS  Google Scholar 

  • Yang, H., Chen, F., An, H., & Lai, S. (2009). Comparative studies on nanostructures of three kinds of pectins in two peach cultivars using atomic force microscopy. Postharvest Biology and Technology, 51(3), 391–398.

    Article  CAS  Google Scholar 

  • Yang, H., Wang, Y., Jiang, M., Oh, J. H., Herring, J., & Zhou, P. (2007a). 2-step optimization of the extraction and subsequent physical properties of channel catfish (Ictalurus punctatus) skin gelatin. Journal of Food Science, 72(4), C188–C195.

    Article  CAS  Google Scholar 

  • Yang, H., Wang, Y., Lai, S., An, H., Li, Y., & Chen, F. (2007b). Application of atomic force microscopy as a nanotechnology tool in food science. Journal of Food Science, 72(4), R65–R75.

    Article  CAS  Google Scholar 

  • Yu, X., & Yang, H. (2017). Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chemistry, 217, 303–310.

    Article  CAS  Google Scholar 

  • Zhang, J., & Yang, H. (2017). Effects of potential organic compatible sanitisers on organic and conventional fresh-cut lettuce (Lactuca sativa Var. Crispa L). Food Control, 72, 20–26.

    Article  CAS  Google Scholar 

  • Zhang, L., Chen, F., An, H., Yang, H., Sun, X., Guo, X., & Li, L. (2008). Physicochemical properties, firmness, and nanostructures of sodium carbonate-soluble pectin of 2 Chinese cherry cultivars at 2 ripening stages. Journal of Food Science, 73(6), N17–N22.

    Article  CAS  Google Scholar 

  • Zhang, L., Chen, F., Zhang, P., Lai, S., & Yang, H. (2017). Influence of rice bran wax coating on the physicochemical properties and pectin nanostructure of cherry tomatoes. Food and Bioprocess Technology, 10, 349–357.

  • Zhao, L., Zhang, Y., & Yang, H. (2017). Efficacy of low concentration neutralised electrolysed water and ultrasound combination for inactivating Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012 on stainless steel coupons. Food Control, 73, 889–899.

    Article  Google Scholar 

  • Zhao, Y., & Xie, J. (2004). Practical applications of vacuum impregnation in fruit and vegetable processing. Trends in Food Science & Technology, 15(9), 434–451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshun Yang.

Ethics declarations

Funding

This study was funded by the Singapore Ministry of Education Academic Research Fund Tier 1 (R-143-000-583-112), project 31371851 supported by NSFC, and an industry grant supported by Changzhou Qihui Management and Consulting Co., Ltd. (R-143-000-616-597).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wu, Q., Ng, L.Y. et al. Effects of Vacuum Impregnation with Calcium Lactate and Pectin Methylesterase on Quality Attributes and Chelate-Soluble Pectin Morphology of Fresh-Cut Papayas. Food Bioprocess Technol 10, 901–913 (2017). https://doi.org/10.1007/s11947-017-1874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1874-7

Keywords

Navigation