Skip to main content
Log in

Supercritical Fluid Extrusion of Protein Puff Made with Fruit Pomace and liquid Whey

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Fruit pomace and cheese whey were incorporated in milk protein extruded products as a source of dietary fiber and nutrients. Feed formulations containing 70–90 % milk protein concentrate (MPC) with 22 % fruit pomace were processed by supercritical fluid extrusion (SCFX) at low temperatures (~90 °C). The process also incorporated concentrated whey containing 20.2 wt% total solids by directly injecting the whey into the extruder barrel at 27.5 wt% of the dry-feed flow rate, providing 5.6 % whey solids to feed formulation. The resulting MPC extrudates retained the natural fruit color following SCFX processing, indicating that little, if any, browning occurred during the processing even though a significant quantity of soluble sugars was present in both pomace and whey. The addition of 22 % fruit pomace and 5.6 % (dry wt) whey solids did not affect the piece density (0.24–0.31 g/cm3), expansion ratio (4.6–5.7), and hardness (38–78 N) of MPC extrudates, which were comparable to starch- or protein-based extrudates made by conventional steam extrusion. Utilizing fruit pomace and whey in extruded products improves the nutritional contents of extruded products and adds value to the by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AACC International. (2000). Approved methods of the American Association of Cereal Chemists, 10th Ed. Methods 44-31. St. Paul, MN: The Association.

    Google Scholar 

  • Alavi, S. H., Gogoi, B. K., Khan, M., Bowman, B. J., & Rizvi, S. S. H. (1999). Structural properties of protein-stabilized starch-based supercritical fluid extrudates. Food Research International, 32(2), 107–118.

    Article  CAS  Google Scholar 

  • Alavi, S. H., & Rizvi, S. S. H. (2009). Supercritical fluid extrusion—a novel method for producing microcellular structures in starch-based matrices. In J. Ahmed, H. S. Ramaswamy, S. Kasapis, & J. Boye (Eds.), Novel food processing—effects on rheological and functional properties (pp. 403–420). Baca Raton, FL: CRC Press.

    Google Scholar 

  • Allen, K. E., Carpenter, C. E., & Walsh, M. K. (2007). Influence of protein level and starch type on an extrusion-expanded whey product. International Journal of Food Science & Technology, 42(8), 953–960.

    Article  CAS  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008). Twin-screw extrusion of barley–grape pomace blends: extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24–32.

    Article  Google Scholar 

  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203.

    Article  CAS  Google Scholar 

  • Bhushan, S., Kalia, K., Sharma, M., Singh, B., & Ahuja, P. S. (2008). Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28(4), 285–296.

    Article  CAS  Google Scholar 

  • Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2013). Ready-to-eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. International Journal of Food Science & Technology, 48(5), 893–902.

    Article  CAS  Google Scholar 

  • Bruns, A. J., & Bourne, M. C. (1975). Effects of sample dimensions on the snapping force of crisp foods *. Journal of Texture Studies, 6(4), 445–458.

    Article  Google Scholar 

  • Gassara, F., Brar, S. K., Pelletier, F., Verma, M., Godbout, S., & Tyagi, R. D. (2011). Pomace waste management scenarios in Québec—impact on greenhouse gas emissions. Journal of Hazardous Materials, 192(3), 1178–1185.

    Article  CAS  Google Scholar 

  • Grant, W. D. (2004). Life at low water activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1448), 1249–1267.

    Article  CAS  Google Scholar 

  • Harper, J. M. (1981). Extrusion of Foods, Vol. 1 (pp. 21–45). Boca Raton, FL: CRC press.

    Google Scholar 

  • Hwang, J.-K., Choi, J.-S., Kim, C.-J., & Kim, C.-T. (1998). Solubilization of Apple Pomace by Extrusion. Journal of Food Processing and Preservation, 22(6), 477–491.

    Article  Google Scholar 

  • Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46(1), 10–21.

    Article  Google Scholar 

  • Khanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing. Journal of Food Science, 74(6), H174–H182.

    Article  CAS  Google Scholar 

  • Köksel, H., Ryu, G.-H., Özboy-Özbas, Ö., Basman, A., & Ng, P. K. W. (2003). Development of a bulgur-like product using extrusion cooking. Journal of the Science of Food and Agriculture, 83(7), 630–636.

    Article  Google Scholar 

  • Lue, S., Hsieh, F., Peng, I. C., & Huff, H. E. (1990). Expansion of corn extrudates containing dietary fiber : a microstructure study. Lebensmittel - Wissenschaft + Technologie, 23(2), 165–173.

    Google Scholar 

  • Maskan M., & Altan A. (2011). Advances in food extrusion technology (pp.121-168). CRC Press.

  • Min, S., Evrendilek, G., & Zhang, H. Q. (2007). Pulsed electric fields: processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE Transactions on Plasma Science, 35(1), 59–73.

    Article  CAS  Google Scholar 

  • Onwulata, C. I., & Heymann, H. (1994). Sensory properties of extruded corn meal related to the spatial distribution of process conditions. Journal of Sensory Studies, 9(1), 101–112.

    Article  Google Scholar 

  • Onwulata, C. I., Konstance, R. P., Smith, P. W., & Holsinger, V. H. (1998). Physical properties of extruded products as affected by cheese whey. Journal of Food Science, 63(5), 814–818.

    Article  CAS  Google Scholar 

  • Onwulata, C. I., Smith, P. W., Konstance, R. P., & Holsinger, V. H. (2001). Incorporation of whey products in extruded corn, potato or rice snacks. Food Research International, 34(8), 679–687.

    Article  Google Scholar 

  • Palou, E., López-Malo, A., Barbosa-Cánovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana puree. Journal of Food Science, 64(1), 42–45.

    Article  CAS  Google Scholar 

  • Paraman, I., Supriyadi, S., Wagner, M. E., & Rizvi, S. S. H. (2013). Prebiotic fibre-incorporated whey protein crisps processed by supercritical fluid extrusion. International Journal of Food Science & Technology, 48(10), 2193–2199.

    CAS  Google Scholar 

  • Paraman, I., Wagner, M. E., & Rizvi, S. S. H. (2012). Micronutrient and protein-fortified whole grain puffed rice made by supercritical fluid extrusion. Journal of Agricultural and Food Chemistry, 60(44), 11188–11194.

    Article  CAS  Google Scholar 

  • Rizvi, S. S. H., & Mulvaney, S. (1992). Extrusion processing with supercritical fluids. US Patent 5120559.

  • Rizvi, S. S. H., Mulvaney, S. J., & Sokhey, A. S. (1995). The combined application of supercritical fluid and extrusion technology. Trends in Food Science & Technology, 6(7), 232–240.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., İbanoğlu, E., & İbanoğlu, Ş. (2008). Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. Journal of Food Engineering, 87(4), 554–563.

    Article  CAS  Google Scholar 

  • Walsh, M. K., & Wood, A. M. (2010). Properties of extrusion-expanded whey protein products containing fiber. International Journal of Food Properties, 13(4), 702–712.

    Article  CAS  Google Scholar 

  • Webb, P. (2001). Volume and density determinations for particle technologists. Micromeritics Instrument Corp. Available from: www.micromeritics.com

  • Yu, J., & Ahmedna, M. (2013). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221–237.

    Article  CAS  Google Scholar 

  • Zhu, L.-J., Shukri, R., de Mesa-Stonestreet, N. J., Alavi, S., Dogan, H., & Shi, Y.-C. (2010). Mechanical and microstructural properties of soy protein—high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. Journal of Food Engineering, 100(2), 232–238.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr Tom Gibson (New York State Agricultural Experiment Station, Geneva, NY) for providing apple pomace for this research, Mr Sean Schell for his technical assistance during extrusion processing, and Wenger Manufacturing, Inc. (Sabetha, KS, USA) for providing the TX-52 magnum extruder used in this research.

Funding source

This work was supported by the USDA National Institute of Food and Agriculture, Hatch project NYC 2013-14-345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilankovan Paraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, V.Z., Paraman, I. & Rizvi, S.S.H. Supercritical Fluid Extrusion of Protein Puff Made with Fruit Pomace and liquid Whey. Food Bioprocess Technol 8, 1707–1715 (2015). https://doi.org/10.1007/s11947-015-1526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1526-8

Keywords

Navigation