Skip to main content
Log in

Dielectric Properties of Raw Milk as Functions of Protein Content and Temperature

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

To understand the effect of protein content on dielectric properties (dielectric constant ε ′ and dielectric loss factor ε ″) of raw milk and to provide information for developing protein content detector being suitable for routine laboratory analysis or real-time quality monitoring, the values of ε ′ and ε ″ of raw cow’s milk with the protein content of 3.21–7.12 % were measured over the frequency range from 10 to 4500 MHz at temperatures from 25 to 75 °C by using a vector network analyzer and an open-ended coaxial-line probe. The results showed that the ε ′ decreased with increasing either frequency or temperature. ε ″ decreased linearly with frequency in a log-log plot at low frequency end and had minimums at about 2000–3500 MHz. The minimums increased with temperature. Below about 600 MHz, ε ″ increased with increasing temperature and decreased above 1000 MHz. ε ′ increased linearly with an increase of protein content below about 150 MHz and decreased linearly above 600 MHz, and ε ″ increased linearly with increasing protein content over full investigated frequency range. The developed third-order polynomial models could describe the dielectric properties of raw cow’s milk as functions of protein content and temperature at a given frequency exactly. If the dielectric properties and temperature of milk can be obtained, its protein content could be sensed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agilent Technologies. (2005). Application note: basics of measuring the dielectric properties of materials, Agilent literature number 5989-2589EN.

  • Ahmed, J., Ramaswamy, H. S., & Raghavan, G. S. V. (2008). Dielectric properties of soybean protein isolate dispersions as a function of concentration, temperature and pH. LWT - Food Science and Technology, 41(1), 71–81.

    Article  CAS  Google Scholar 

  • Bogomolov, A., Dietrich, S., Boldrini, B., & Kessler, R. W. (2012). Quantitative determination of fat and total protein in milk based on visible light scatter. Food Chemistry, 134(1), 412–418.

    Article  CAS  Google Scholar 

  • Bogomolov, A., & Melenteva, A. (2013). Scatter-based quantitative spectroscopic analysis of milk fat and total protein in the region 400–1100 nm in the presence of fat globule size variability. Chemometrics and Intelligent Laboratory Systems, 126, 129–139.

  • Bonfatti, V., Di Martino, G., & Carnier, P. (2011). Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows. Journal of Dairy Science, 94(12), 5776–5785.

    Article  CAS  Google Scholar 

  • Botaro, B. G., Cortinhas, C. S., Mestieri, L., Machado, P. F., & dos Santos, M. V. (2011). Prediction of bovine milk true protein content by mid-infrared spectroscopy. Ciencia Rural, 41(8), 1472–1474.

    Article  CAS  Google Scholar 

  • Coronel, P., Simunovic, J., & Sandeep, K. P. (2003). Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. Journal of Food Science, 68(6), 1976–1981.

  • Cozzolino, R., Passalacqua, S., Salemi, S., & Garozzo, D. (2002). Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 37(9), 985–991.

    Article  CAS  Google Scholar 

  • Dziuba, J., Nalecz, D., & Minkiewicz, P. (2001). Reversed-phase high-performance liquid chromatography on-line with the second and fourth derivative ultraviolet spectroscopy as a tool for identification of milk proteins. Analytica Chimica Acta, 449(1–2), 243–252.

    Article  CAS  Google Scholar 

  • Fagan, C. C., Everard, C., O’Donnell, C. P., Downey, G., & O’Callaghan, D. J. (2005). Prediction of inorganic salt and moisture content of process cheese using dielectric spectroscopy. International Journal of Food Properties, 18(3), 543–557.

    Article  Google Scholar 

  • Feng, X.-d., Su, R., Xu, N., Wang, X.-h., Yu, A.-m., Zhang, H.-q., & Cao, Y.-b. (2013). Portable analyzer for rapid analysis of total protein, fat and lactose contents in raw milk measured by non-dispersive short-wave near-infrared spectrometry. Chemical Research in Chinese Universities, 29(1), 15–19.

    Article  CAS  Google Scholar 

  • García, A., Torres, J. L., Prieto, E., & De Blas, M. (2001). Dielectric properties of grape juice at 0.2 and 3 GHz. Journal of Food Engineering, 48(3), 203–211.

  • Gunasekaran, N., Mallikarjunan, P., Eifert, J., & Sumner, S. (2005). Effect of fat content and temperature on dielectric properties of ground beef. Transactions of the ASAE, 48(2), 673–680.

    Article  Google Scholar 

  • Guo, W., Liu, Y., Zhu, X., & Wang, S. (2011a). Dielectric properties of honey adulterated with sucrose syrup. Journal of Food Engineering, 107(1), 1–7.

    Article  CAS  Google Scholar 

  • Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2007). Dielectric properties of honeydew melons and correlation with quality. Journal of Microwave Power & Electromagnetic Energy, 41(2), 44–54.

    Google Scholar 

  • Guo, W., & Zhu, X. (2014). Dielectric properties of red pepper powder related to radiofrequency and microwave drying. Food and Bioprocess Technology, 7(12), 3591–3601.

    Article  CAS  Google Scholar 

  • Guo, W., Zhu, X., Liu, H., Yue, R., & Wang, S. (2010a). Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering, 99(2), 344–350.

    Article  Google Scholar 

  • Guo, W., Zhu, X., Liu, Y., & Zhuang, H. (2010b). Sugar and water contents of honey with dielectric property sensing. Journal of Food Engineering, 97(2), 275–281.

    Article  CAS  Google Scholar 

  • Guo, W., Zhu, X., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011b). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Science and Technology, 44(1), 224–230.

  • Kalinin, A., Krasheninnikov, V., Sadovskiy, S., & Yurova, E. (2013). Determining the composition of proteins in milk using a portable near infrared spectrometer. Journal of Near Infrared Spectroscopy, 21(5), 409–415.

    Article  CAS  Google Scholar 

  • Mudgett, R. E., Smith, A. C., Wang, D. I. C., & Goldblith, S. A. (1974). Prediction of dielectric properties in nonfat milk at frequencies and temperatures of interest in microwave processing. Journal of Food Science, 39(1), 52–54.

    Article  CAS  Google Scholar 

  • Nelson, S. O. (2003). Frequency- and temperature-dependent permittivities of fresh fruits and vegetables from 0.01 to 1.8 GHz. Transactions of the ASAE, 46(2), 567–574.

  • Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 70–75). New York: Marcel Dekker.

    Google Scholar 

  • Nunes, A. C., Bohigas, X., & Tejada, J. (2006). Dielectric study of milk for frequencies between 1 and 20 GHz. Journal of Food Engineering, 76(2), 250–255.

  • Pritchard, S. R., & Kailasapathy, K. (2011). Chemical, physical, and functional characteristics of dairy ingredients. In R. C. Chandan & A. Kilara (Eds.), Dairy ingredients for food processing (pp. 35–57). Ames: Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  • Rukke, E. O., Olsen, E. F., Devold, T., Vegarud, G., & Isaksson, T. (2010). Technical note: comparing calibration methods for determination of protein in goat milk by ultraviolet spectroscopy. Journal of Dairy Science, 93(7), 2922–2925.

    Article  CAS  Google Scholar 

  • Rutten, M. J. M., Bovenhuis, H., Heck, J. M. L., & van Arendonk, J. A. M. (2011). Predicting bovine milk protein composition based on Fourier transform infrared spectra. Journal of Dairy Science, 94(11), 5683–5690.

    Article  CAS  Google Scholar 

  • Ryynänen, S. (1995). The electromagnetic properties of food materials: a review of the basic principles. Journal of Food Engineering, 26(4), 409–429.

    Article  Google Scholar 

  • Sadat, A., Mustajab, P., & Khan, I. A. (2006). Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. Journal of Food Engineering, 77(3), 472–477.

    Article  CAS  Google Scholar 

  • Sipahioglu, O., & Barringer, S. A. (2003). Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. Journal of Food Science, 68(1), 234–239.

    Article  CAS  Google Scholar 

  • Sipahioglu, O., Barringer, S. A., Taub, I., & Prakash, A. (2003). Modeling the dielectric properties of ham as a function of temperature and composition. Journal of Food Science, 68(3), 904–909.

    Article  CAS  Google Scholar 

  • Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X. Young, J. Tang, C. Zhang, & W. Xin (Eds.), Advances in agricultural engineering. New York: Scientific Press.

    Google Scholar 

  • Wang, J., Tang, J. M., Wang, Y. F., & Swanson, B. (2009). Dielectric properties of egg whites and whole eggs as influenced by thermal treatments. LWT - Food Science and Technology, 42(7), 1204–1212.

    Article  CAS  Google Scholar 

  • Wang, Y., Tang, J., Rasco, B., Kong, F., & Wang, S. (2008). Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering, 87, 236–246.

    Article  Google Scholar 

  • Wang, Y., Zhang, L., Gao, M., Tang, J., & Wang, S. (2013). Temperature- and moisture-dependent dielectric properties of macadamia nut kernels. Food and Bioprocess Technology, 6(8), 2165–2176.

    Article  CAS  Google Scholar 

  • Xin, Q., Zhi Ling, H., Jian Long, T., & Zhu, Y. (2006). The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology. Optics and Lasers in Engineering, 44(8), 858–869.

    Article  Google Scholar 

  • Zhang, L., Lyng, J. G., & Brunton, N. P. (2007). The effect of fat, water and salt on the thermal and dielectric properties of meat batter and its temperature following microwave or radio frequency heating. Journal of Food Engineering, 80(1), 142–151.

    Article  Google Scholar 

  • Zhu, X., Guo, W., & Jia, Y. (2014). Temperature-dependent dielectric properties of raw cow’s and goat’s milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization process. Food and Bioprocess Technology, 7(6), 1830–1839.

  • Zhu, X., Guo, W., & Wu, X. (2012). Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 109(2), 258–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was sponsored by grant from Chinese Universities Scientific Fund (No. ZD2012017, Northwest A&F University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Guo, W., Jia, Y. et al. Dielectric Properties of Raw Milk as Functions of Protein Content and Temperature. Food Bioprocess Technol 8, 670–680 (2015). https://doi.org/10.1007/s11947-014-1440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1440-5

Keywords

Navigation