Skip to main content
Log in

Effect of Different Extrusion Treatments and Particle Size Distribution on the Physicochemical Properties of Rice Flour

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Rice flour is an interesting alternative for developing gluten free products, but its features do not always meet the process requirements. The objective of this study was to modify the functional properties of rice flour by combining extrusion and size fractionation. Different extrusion conditions (barrel temperature, feed moisture content and feed rate) were applied to vary the severity of the treatment on the flour constituents. Extrusion and mechanical fractionation of the rice flours modified their behavior affecting hydration, thermal and pasting features, besides their susceptibility to enzymatic hydrolysis. Specifically, onset and peak temperature increased and gelatinization enthalpy decreased when increasing barrel temperature of the extrusion. Fine flours with stronger extrusion (high temperature barrel) showed the highest susceptibility to enzymatic hydrolysis. Overall, the combination of both physical treatments maybe an attractive alternative for obtaining clean label rice flours with modified features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2

Similar content being viewed by others

References

  • AACC. (2012). Approved methods of the american association of cereal chemists, methods 46-30.01 (Protein), 55-40.01 (Particle size), 76-30a (damaged starch), 56-30 (WBC), 61-02.01 (RVA) (11th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Al-Rabadi, G., Torley, P., Williamsa, B., Brydena, W., & Gidley, M. (2011). Effect of extrusion temperature and pre-extrusion particle size on starch digestion kinetics in barley and sorghum grain extrudates. Animal Feed Science and Technology, 168, 267–279.

    Article  CAS  Google Scholar 

  • Alsaffar, A. (2011). Effect of food processing on the resistant starch content of cereals and cereal products—A review. International Journal of Food Science and Technology, 46, 455–462.

    Article  CAS  Google Scholar 

  • Aluko, R., Mofolasayo, O., & Watts, B. (2009). Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours. Journal of Agriculture and. Food Chemistry, 57, 9793–9800.

    Article  CAS  Google Scholar 

  • Atwell, W. (2001). Composition of commercial flour. In W. Atwell (Ed.), Wheat Flour (pp. 27–42). St. Paul: American Association of Cereal Chemists.

    Chapter  Google Scholar 

  • Barres, C., Verges, B., Tayeb, J., & Della Valle, G. (1990). Transformation of wheat flour by extrusion cooking. Influence of screw configuration and operating conditions. Cereal Chemistry, 67, 427–433.

    Google Scholar 

  • Boladea, M., Usman, M., Rasheed, A., Benson, E., & Salifou, I. (2002). Influence of hydrothermal treatment of maize grains on the quality and acceptability of tuwon masara (traditional maize gel). Food Chemistry, 79, 479–483.

    Article  Google Scholar 

  • Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H., & Ellis, P. R. (2012). Analysis of starch amylolysis using plots for first-order kinetics. Carbohydrate Polymers, 87, 2189–2197.

    Article  CAS  Google Scholar 

  • Camire, M., Camire, A., & Krumhar, K. (1990). Chemical and nutritional changes in foods during the extrusion. Critical Reviews in Food Science and Nutrition, 29, 35–57.

    Article  CAS  Google Scholar 

  • Chinnaswamy, R., & Hannah, M. (1990). Macromolecular and functional properties of native and extruded corn starch. Cereal Chemistry, 67, 490–499.

    CAS  Google Scholar 

  • Chiu, C., & Solarek, D. (2009). Modification of starch. In J. BeMiller & R. Whistler (Eds.), Starch. Chemistry and Technology (pp. 629–656). New York: Academic Press.

    Google Scholar 

  • Clerici, M., Arioldi, C., & El-Dash, A. (2009). Production of acidic extruder rice flour and its influence on the qualities of gluten free bread. LWT--Food Science and Technology, 42, 618–623.

    Article  CAS  Google Scholar 

  • Colonna, P., Doublier, J., Melcion, J., Demonredon, F., & Mercier, C. (1984). Extrusion cooking and drum drying of wheat-starch.1. Physical and macromolecular modifications. Cereal Chemistry, 61, 538–543.

    CAS  Google Scholar 

  • de la Hera, E., Gómez, M., & Rosell, C. (2013a). Particle size distribution affecting the starch enzymatic digestion and hydration of rice flour carbohydrates. Carbohydrate Polymers, 98, 421–427.

    Article  Google Scholar 

  • de la Hera, E., Martínez, M., & Gómez, M. (2013b). Influence of flour particle size on quality of gluten-free rice bread. LWT--Food Science and Technology, 54, 199–206.

    Article  CAS  Google Scholar 

  • de la Hera, E., Martínez, M., Oliete, B., & Gómez, M. (2013c). Influence of flour particle size on quality of gluten-free rice cakes. Food and Bioprocess Technology, 6, 2280–2288.

    Article  Google Scholar 

  • Doublier, J., Colonna, P., & Mercier, C. (1986). Extrusion cooking and drum drying of wheat-starch. 2. Rheological characterization of starch pastes. Cereal Chemistry, 63, 240–246.

    Google Scholar 

  • Ghaid, J., Al-Rabadi, G., Gilbert, R., & Gidley, M. (2009). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50, 198–204.

    Article  Google Scholar 

  • Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17, 427–437.

    Article  Google Scholar 

  • Gularte, M. A., & Rosell, C. M. (2011). Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids. Carbohydrate Polymers, 85, 237–244.

    Article  CAS  Google Scholar 

  • Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43, 38–46.

    Article  CAS  Google Scholar 

  • Jacobs, H., & Delcour, J. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agricultural and Food Chemistry, 46, 2895–2905.

    Article  CAS  Google Scholar 

  • Lee, S. M., Yoo, J., Inglett, G. E., & Lee, S. (2013). Particle size fractionation of high-amylose rice (Goami 2) flour as an oil barrier in a batter-coated fried system. Food and Bioprocess Technology, 6, 726–733.

    Article  CAS  Google Scholar 

  • Mercier, C., & Feillet, P. (1975). Modification of carbohydrate components by extrusion-cooking of cereal products. Cereal Chemistry, 63, 283–297.

    Google Scholar 

  • Moreira, R., Chenlo, F., & Torres, M. D. (2013). Rheology of gluten-free doughs from blends of chestnutand rice flours. Food and Bioprocess Technology, 6, 1476–1485.

    Article  CAS  Google Scholar 

  • Nelson, A. (2001). Properties of Hihg-fibre ingredientes. Cereal Foods World, 46, 93–97.

    CAS  Google Scholar 

  • Perdon, A., Siebenmorgen, T., Mauromoustakos, A., Griffin, V., & Johnson, E. (2001). Degree of milling effects on rice pasting properties. Cereal Chemistry, 78, 205–209.

    Article  CAS  Google Scholar 

  • Poulsen, B., Ruiter, G., Visser, J., & Iversen, J. (2003). Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture. Biotechnology Letters, 25, 565–571.

    Article  CAS  Google Scholar 

  • Rosell, C. M., & Foegeding, A. (2007). Interaction of hydroxypropylmethylcellulose with gluten proteins: Small deformation properties during thermal treatment. Food Hydrocolloids, 21, 1092–1100.

    Article  CAS  Google Scholar 

  • Wang, C., & Johnson, L. (2001). Functional properties of hydrothermally cooked soy protein products. Journal of the American Oil Chemists Society, 78, 189–195.

    Article  CAS  Google Scholar 

  • Wen, L., Rodis, P., & Wasserman, B. (1990). Starch fragmentation and protein insolubilization during twin−screw extrusion of corn meal. Cereal Chemistry, 67, 268–275.

    CAS  Google Scholar 

  • Yeh, A. (2004). Preparation and applications of rice flour. In E. Champagne (Ed.), Rice: Chemistry and tehnology (pp. 495–540). St. Paul: American Association of Cereal Chemist.

    Google Scholar 

  • Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54, 98–113.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of Junta de Castilla y León (VA054A12-2), the Spanish Ministry of Economy and Sustainability (Project AGL2011-23802) and the European Regional Development Fund (FEDER). The authors are also grateful to Harinera Los Pisones, (Zamora, Spain) for supplying the rice flours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, M.M., Calviño, A., Rosell, C.M. et al. Effect of Different Extrusion Treatments and Particle Size Distribution on the Physicochemical Properties of Rice Flour. Food Bioprocess Technol 7, 2657–2665 (2014). https://doi.org/10.1007/s11947-014-1252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1252-7

Keywords

Navigation