Skip to main content
Log in

Hydroxyl Radical-Stressed Whey Protein Isolate: Functional and Rheological Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objective of the study was to examine the sensitivity of whey protein functionality to oxidizing radicals. Whey protein isolate (WPI) was oxidatively stressed by incubation at 20 °C for 3, 5, and 10 h in hydroxyl radical-generating media containing 0.1 mM ascorbic acid, 0.1 mM FeCl3, and 1–10 mM H2O2. Protein solubility decreased (P < 0.05) with increasing H2O2 concentrations and oxidation time. Surface properties of WPI, including both emulsifying and foaming activities, exhibited significant improvements (P < 0.05) at H2O2 concentrations up to 5 mM and oxidation time up to 5 h. The longer oxidation time or higher H2O2 concentrations tended to diminish the surface functionality. However, the oxidative stress, though decreasing the onset gelling temperature, had a general detrimental effect on WPI gelation (hardness, springiness, and storage modulus). The results indicated opposing effects of oxidation on WPI: detrimental to hydrodynamic properties (solubility, gelation) but beneficial to surface properties (emulsification, foaming).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cayot, P., & Lorient, D. (1997). Structure–function relationship of whey proteins. In S. Damodaran & A. Paraf (Eds.), Food proteins and their applications (pp. 225–256). New York: Marcel Dekker.

    Google Scholar 

  • Cocup, R. O., & Sanderson, W. B. (1987). Functionality of dairy ingredients in bakery products. Food Technology, 41, 86–90.

    CAS  Google Scholar 

  • Cui, X. H., Xiong, Y. L., Kong, B. H., Zhao, X. H., & Liu, N. (2011). Hydroxyl radical-stressed whey protein isolate: Chemical and structural properties. Food and Bioprocess Technology. doi:10.1007/s11947-011-0515-9.

  • Damodaran, S. (2007). Amino acids, peptides, and proteins. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema's food chemistry (4th ed., pp. 217–329). Boca Raton: CRC.

    Google Scholar 

  • de Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. Journal of Dairy Science, 81, 597–608.

    Article  Google Scholar 

  • Elias, R. J., McClements, D. J., & Decker, E. A. (2005). Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase of β-lactoglobulin in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 53, 10248–10253.

    Article  CAS  Google Scholar 

  • Færgemand, M., Otte, J., & Qvist, K. B. (1998). Cross-linking of whey proteins by enzymatic oxidation. Journal of Agricultural and Food Chemistry, 46, 1326–1333.

    Article  Google Scholar 

  • Kinsella, J. E., & Whitehead, D. M. (1989). Proteins in whey: Chemical, physical, and functional properties. Advances in Food and Nutrition Research, 33, 343–438.

    Article  CAS  Google Scholar 

  • Li-Chan, E., & Nakai, S. (1991). Importance of hydrophobicity of proteins in food emulsions. In M. El-Nokaly & D. Cornell (Eds.), Microemulsions and emulsions in foods (chapter 15) (pp. 193–212). Washington: American Chemical Society.

    Chapter  Google Scholar 

  • Liu, G., & Xiong, Y. L. (2000). Thermal transitions and dynamic gelling properties of oxidatively modified myosin, b-lactoglobulin, soy 7S globulin and their mixtures. Journal of the Science of Food and Agriculture, 80, 1728–1734.

    Article  CAS  Google Scholar 

  • Liu, G., Xiong, Y. L., & Butterfield, D. A. (2000). Chemical, physical, and gel-forming properties of oxidized myofibrils and whey- and soy-protein isolates. Journal of Food Science, 65, 811–818.

    Article  CAS  Google Scholar 

  • Lund, M. N., Heinonen, M., Baron, C. P., & Estévez, M. (2011). Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research, 55, 83–95.

    Article  CAS  Google Scholar 

  • Mestdagh, F., Kerkaert, B., Cucu, T., & Meulenaer, B. D. (2011). Interaction between whey proteins and lipids during light-induced oxidation. Food Chemistry, 126, 1190–1197.

    Article  CAS  Google Scholar 

  • Morr, C. V., & Ha, E. Y. (1993). Whey protein concentrates and isolates: Processing and functional properties. Critical Review in Food Science and Nutrition, 33, 431–476.

    Article  CAS  Google Scholar 

  • Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26, 716–723.

    Article  CAS  Google Scholar 

  • Pena-Ramos, E. A., Xiong, Y. L., & Arteaga, G. E. (2004). Fractionation and characterization for antioxidant activity of hydrolyzed whey protein. Journal of the Science of Food and Agriculture, 84, 1908–1918.

    Article  CAS  Google Scholar 

  • Sathe, S. K., & Salunkhe, D. K. (1981). Functional properties of the Great Northern Bean (Phaseolus vulgaris L.) proteins: Emulsion, foaming, viscosity and gelation properties. Journal of Food Science, 46, 71–74.

    Article  Google Scholar 

  • Shahidi, F., Han, X. Q., & Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53, 285–293.

    Article  CAS  Google Scholar 

  • Smithers, G. W. (2008). Whey and whey proteins—From ‘gutter-to-gold’. International Dairy Journal, 18, 695–704.

    Article  CAS  Google Scholar 

  • Srinivasan, S., & Hultin, H. O. (1997). Chemical, physical, and functional properties of cod proteins modified by a nonenzymic free-radical-generating system. Journal of Agricultural and Food Chemistry, 45, 310–320.

    Article  CAS  Google Scholar 

  • Xiong, Y. L., Blanchard, S. P., Ooizumi, T., & Ma, Y. (2010). Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein. Journal of Food Science, 75, C215–C221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation in China (grant no. 30871818) and the Foundation of Innovative Research Team of Higher Education of Heilongjiang Province (grant no. 2010td11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youling L. Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, B., Xiong, Y.L., Cui, X. et al. Hydroxyl Radical-Stressed Whey Protein Isolate: Functional and Rheological Properties. Food Bioprocess Technol 6, 169–176 (2013). https://doi.org/10.1007/s11947-011-0674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0674-8

Keywords

Navigation