Skip to main content
Log in

Effect of Ensilaging and Organic Solvent Treatment on Activity of Proteases from Chicken Intestine

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Studies were carried out to assess the extractability of proteins from chicken intestine and to determine the activity of proteases in crude extract. Further, the activity of proteases was evaluated in acid and fermented chicken intestinal silage as well as in organic solvent-treated intestinal samples. Extractability of proteins was in the range of 3.85–4.06 mg/ml and was not affected (p ≥ 0.05) by the four different extractants, viz., distilled water, phosphate buffer, and 1% potassium chloride with or without 0.1 M Na2EDTA. The specific activity of acidic and alkaline proteases were in the range of 4.78–7.26 and 19.31–24.07 units, respectively, and was not affected (p ≥ 0.05) by the type of extractant used. The pH profile for activity showed higher activity in the alkaline pH range. Addition of acid or ingredients for fermentation reduced the extractability of protein significantly (p ≤ 0.05). During storage of silage, the reduction in enzyme activity was higher in acid silage compared with fermented silage. Treatment of chicken intestine with organic solvents enhanced the enzyme activity and higher increase was observed with isopropyl alcohol-treated intestine. During storage of solvent-treated powders up to 3 months, the activity of proteases reduced in all the solvent-treated samples highest being in acetone-treated powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • An, H., & Visessanguan, W. (2000). Recovery of enzymes from seafood processing wastes. In N. F. Haard & B. K. Simpson (Eds.), Seafood enzymes (pp. 641–664). New York: Marcel Dekker.

    Google Scholar 

  • An, H., Seymour, T. A., Wu, J., & Morrissey, M. T. (1994). Assay system and characterization of Pacific whiting (Merluccius productus) protease. Journal of Food Science, 59, 277–281.

    Article  CAS  Google Scholar 

  • Bezerra, R. S., Lins, E. F. J., Alencar, R. B., Paiva, P. M. G., Chaves, M. E. C., Coelho, L. C. B. B., et al. (2005). Alkaline proteinases from intestine of Nile Tilapia, Oreochromis niloticus. Process Biochemistry, 40, 1829–1834.

    Article  CAS  Google Scholar 

  • Bhaskar, N., Sachindra, N. M., Modi, V. K., Sakhare, P. Z., & Mahendrakar, N. S. (2006). Preparation of proteolytic activity rich ginger powder and evaluation of its tenderizing effect of spent hen muscles. Journal of Muscle Foods, 17, 174–184.

    Article  Google Scholar 

  • Bhaskar, N., Sathisha, A. D., Sachindra, N. M., Sakhare, P. Z., & Mahendrakar, N. S. (2007). Effect of acid ensiling on stability of visceral waste proteases of Indian major carp, Labeo rohita. Journal of Aquatic Food Product Technology, 16, 73–86.

    Article  CAS  Google Scholar 

  • Brandelli, A. (2008). Bacterial keratinases: Useful enzymes for bioprocessing agroindustrial wastes and beyond. Food and Bioprocess Technology, 1, 105–116.

    Article  Google Scholar 

  • Casarin, F., Cladera-Olivera, F., & Brandelli, A. (2008). Use of poultry byproduct for production of keratinolytic enzymes. Food and Bioprocess Technology, 1, 301–305.

    Article  Google Scholar 

  • Chong, A. S. C., Hashim, R., Chow-Yang, L., & Ali, A. B. (2002). Partial characterization and activities of proteases from digestive tract of discuss fish (Symphysodon aequifasciata). Aquaculture, 203, 321–333.

    Article  CAS  Google Scholar 

  • Faid, M., Zouiten, A., Elmarrakchi, A., & Begdouri, A. A. (1997). Biotransformation of fish waste into stable feed ingredients. Food Chemistry, 60, 13–18.

    Article  CAS  Google Scholar 

  • Gildberg, A. (2004). Enzymes and bioactive peptides from fish waste related to fish silage, fish feed and fish sauce production. Journal of Aquatic Food Product Technology, 13, 3–11.

    Article  CAS  Google Scholar 

  • Gildberg, A., & Raa, J. (1977). Properties of propionic acid/formic acid preserved silage of cod viscera. Journal of Science of Food and Agriculture, 28, 647–653.

    Article  CAS  Google Scholar 

  • Haard, N. F., & Simpson, B. K. (1994). Proteases from aquatic organisms and their uses in seafood industry. In A. M. Martin (Ed.), Fisheries Processing (pp. 132–154). London: Chapman & Hall.

    Google Scholar 

  • Heu, M. S., Pyeun, J. H., Kim, H. R., & Godber, J. S. (1991). Purification and characterization of alkaline proteinases from the viscera of anchovy, Engraulis japonica. Journal of Food Biochemistry, 15, 51–66.

    Article  CAS  Google Scholar 

  • Honda, K., Kamisoyam, H., Yagi, K., Motoki, T., Ishiwata, H., & Hasegawa, S. (2000). Purification and characterization of carboxypeptidase A from chicken pancreas. Animal Science Journal, 71, 520–523.

    CAS  Google Scholar 

  • Jamdar, S. N., & Harikumar, P. (2005). Autolytic degradation of chicken intestinal proteins. Bioresource Technology, 96, 1276–1284.

    Article  CAS  Google Scholar 

  • Jamdar, S. N., & Harikumar, P. (2008). A rapid autolytic method for the preparation of protein hydrolysate from poultry viscera. Bioresource Technology, 99, 6934–6940.

    Article  CAS  Google Scholar 

  • Jamdar, V. K., Jamdar, S. N., Dandekar, S. P., & Harikumar, P. (2003). Purification and characterization of aminopeptidase from chicken intestine. Journal of Food Science, 68, 438–443.

    Article  Google Scholar 

  • Kristensen, L., & Purslow, P. P. (2000). The effect of aging on water holding capacity of pork: Role of cytoskeletal proteins. Meat Science, 58, 17–23.

    Article  Google Scholar 

  • Lowry, O. H., Fan, A. L., Randall, R. J., & Rosebrough, N. J. (1951). Protein measurement with Folin Phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Madhusudhan, K. T., Mokady, S., & Cogan, U. (1987). Chicken pancreatic enzymes for clinical use: Autoactivation of proteolytic zymogens. Journal of Science of Food and Agriculture, 41, 187–193.

    Article  CAS  Google Scholar 

  • Mahendrakar, N. S., Rathinaraj, K., Khabade, V. S., Dani, N. P., & Ramesh, B. S. (1995). Chemical changes during fermentation of poultry intestine with molasses. Irish Journal of Agriculture and Food Research, 34, 175–181.

    Google Scholar 

  • Michail, M., Vasiliadou, M., & Zotos, A. (2006). Partial purification and comparison of precipitation techniques of proteolytic enzymes from trout (Salmo gairdnerii) heads. Food Chemistry, 97, 50–55.

    Article  CAS  Google Scholar 

  • Ockerman, H. W., & Hansen, C. L. (2000). Poultry byproducts. In H. W. Ockerman & C. L. Hansen (Eds.), Animal byproduct processing and utilization (pp. 439–455). New York: CRC press.

    Google Scholar 

  • Raa, J., & Gildberg, A. (1982). Fish silage: A review. CRC Critical Reviews in Food Science and Nutrition, 16, 383–419.

    Article  CAS  Google Scholar 

  • Raju, A. A., Rose, C., & Rao, N. M. (1997). Enzymatic hydrolysis of tannery fleshings using chicken intestinal proteases. Animal Feed Science Technology, 66, 139–147.

    Article  CAS  Google Scholar 

  • Rathinaraj, K., Jaganatha Rao, R. J., & Mahendrakar, N. S. (1996). Effect of feeding extruded diets containing fermented fish and poultry offals on growth and meat quality of broiler chickens. International Journal of Animal Science, 11, 277–282.

    Google Scholar 

  • Reece, P. (1988). Recovery of proteases from fish waste. Process Biochemistry, 23, 62–66.

    CAS  Google Scholar 

  • Sachindra, N. M., Bhaskar, N., & Mahendrakar, N. S. (2005). Carotenoids in different body components of Indian shrimps. Journal of Science of Food and Agriculture, 85, 167–172.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Kamil, Y. V. A. J. (2001). Enzymes from fish and aquatic invertebrates and their application in food industry. Trends in Food Science and Technology, 12, 435–464.

    Article  Google Scholar 

  • Shaw, D. M., Narasimha Rao, D., & Mahendrakar, N. S. (1997). Growth/performance and meat quality of broiler chicks fed with fermented poultry intestine silage. International Journal of Animal Science, 12, 221–224.

    Google Scholar 

  • Statsoft. (1999). Statistics for windows. Tulsa, USA: Statsoft Inc.

    Google Scholar 

  • Temiz, H., Aykut, U., Okumus, E., & Turhan, S. (2007). The partial purification and properties of pepsin obtained from turkey proventriculus. Biotechnology, Bioprocess Engineering, 12, 450–456.

    Article  CAS  Google Scholar 

  • Temiz, H., Okumus, E., Aykut, U., Dervisoglu, M., & Yazici, F. (2008). Partial purification of pepsin from turkey proventriculus. World Journal of Microbiology and Biotechnology, 24, 1851–1855.

    Article  CAS  Google Scholar 

  • Thomson, E. H., Wolf, I. D., & Allen, C. E. (1973). Ginger rhizome: A new source of proteolytic enzyme. Journal of Food Science, 38, 652–655.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakkarike Manjabhat Sachindra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathinaraj, K., Sakhare, P.Z., Sachindra, N.M. et al. Effect of Ensilaging and Organic Solvent Treatment on Activity of Proteases from Chicken Intestine. Food Bioprocess Technol 3, 783–788 (2010). https://doi.org/10.1007/s11947-009-0293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0293-9

Keywords

Navigation