Skip to main content

Advertisement

Log in

Effect of Surface Density on the Engineering Properties of High Methoxyl Pectin-Based Edible Films

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of pectin surface density (ρ s) on the engineering properties of high methoxyl (HM) pectin-based edible films was determined in order to explore the role of ρ s on structure and functional properties. Films at different ρ s values (2.5, 3.2, 3.8, 4.5, 5.1, 5.8 mg cm−2) were analyzed by means of microscopy, thermal, mechanical, and barrier (water vapor permeability WVP, oxygen permeability \( {\text{kP}}_{{{\text{O}}_2 }} \), carbon dioxide permeability \( {\text{kP}}_{{{\text{CO}}_2 }} \)) properties. Microscopy, thermal, and mechanical results showed that by increasing ρ s from 2.5 to 5.8 mg cm−2, the film structure does not change. HM pectin-based film has a tensile strength of 20 ± 7 MPa and an elastic modulus (E) equal to 2,400 ± 200 MPa. However, it is quite brittle as the elongation to break (e) is close to 1%. Although the film structure was unaffected by ρ s, WVP increased with the rise in ρ s while \( {\text{kP}}_{{{\text{O}}_2 }} \) and \( {\text{kP}}_{{{\text{CO}}_2 }} \) decreased. On the whole, HM pectin-based film showed barrier properties comparable to biodegradable commercial film and low selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arvanitoyannis, I., Psomiadou, E., & Nakayama, N. (1996). Edible films made from sodium caseinate, starches, sugar or glycerol, Part I. Carbohydrate Polymers, 31, 179–192. doi:10.1016/S0144-8617(96)00123-3.

    Article  Google Scholar 

  • Arvanitoyannis, I., Psomiadou, E., & Nakayama, N. (1997). Edible films made from gelatine, soluble starch and polyols. Part 3. Food Chemistry, 60(4), 593–604. doi:10.1016/S0308-8146(97)00038-1.

    Article  CAS  Google Scholar 

  • ASTM. (1993). E96-93: Annual book of ASTM standards. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • ASTM. (2001). D882-00: Annual book of ASTM standards. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • Banerjee, R., & Chen, H. (1995). Functional properties of edible films using whey protein concentrate. Journal of Dairy Science, 78, 1673–1683.

    Article  CAS  Google Scholar 

  • Banker, G. S. (1966). Film coating theory and practice. Journal of Pharmaceutical Sciences, 55, 81–89. doi:10.1002/jps.2600550118.

    Article  CAS  Google Scholar 

  • Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapour permeability of edible starch based films. Journal of Food Engineering, 80, 972–978. doi:10.1016/j.jfoodeng.2006.07.016.

    Article  CAS  Google Scholar 

  • Bruno, M., Giancone, T., Torrieri, E., Masi, P., & Moresi, M. (2008). Engineering properties of edible transglutaminase cross-linked caseinate-based films. Food and Bioprocess Technology, 1, 393–404. doi:10.1007/s11947-007-0031-0.

    Article  Google Scholar 

  • Chen, H. (1994). Functional properties and applications of edible films made of milk proteins. Journal of Dairy Science, 78, 2563–2583.

    Article  Google Scholar 

  • Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88, 159–168. doi:10.1016/j.jfoodeng.2008.02.002.

    Article  CAS  Google Scholar 

  • Clark, A. H., & Farrer, D. B. (1996). Shear modulus-concentration relationships for low DE pectin-calcium gels in the temperature range 20–85°C. Food Hydrocolloids, 10, 31–39.

    Article  CAS  Google Scholar 

  • Clark, A. H., Evans, K. T., & Farrer, D. B. (1994). Shear modulus-temperature meltdown profiles of gelatine and pectin gels. A cascade theory description. International Journal of Biological Macromolecules, 15, 125–130. doi:10.1016/0141-8130(94)90038-8.

    Article  Google Scholar 

  • Coffin, D. R., & Fishman, M. L. (1993). Viscoelastic properties of pectin/starch blends. Journal of Agricultural and Food Chemistry, 41, 1192–1197. doi:10.1021/jf00032a005.

    Article  CAS  Google Scholar 

  • Di Pierro, P., Mariniello, L., Giosafatto, C. V. L., Masi, P., & Porta, R. (2005). Solubility and permeability properties of edible pectin-soy flour film obtained in the absence or presence of transglutaminase. Food Biotechnology, 19, 37–49. doi:10.1081/FBT-200049059.

    Article  Google Scholar 

  • Di Pierro, P., Chico, B., Villalonga, R., Mariniello, L., Damiao, A. E., Masi, P., et al. (2006). Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analysis of their mechanical and barrier properties. Biomacromolecules, 7, 744–749. doi:10.1021/bm050661u.

    Article  Google Scholar 

  • Di Pierro, P., Chico, B., Villalonga, R., Mariniello, L., Masi, P., & Porta, R. (2007). Transglutaminase-catalyzed preparation of chitosan–ovoalbumin films. Enzyme and Microbial Technology, 40, 437–441. doi:10.1016/j.enzmictec.2006.07.017.

    Article  Google Scholar 

  • Fishman, M. L., & Coffin, D. R. (1998). Mechanical, microstructural and solubility properties of pectin/poly (vinyl alcohol) blends. Carbohydrate Polymers, 35, 195–203. doi:10.1016/S0144-8617(97)00245-2.

    Article  CAS  Google Scholar 

  • Fishman, M. L., Coffin, D. R., Konstance, R. P., & Onwulata, C. I. (2000). Extrusion of pectin/starch blends plasticized with glycerol. Carbohydrate Polymers, 41, 317–325. doi:10.1016/S0144-8617(99)00117-4.

    Article  CAS  Google Scholar 

  • Fishman, M. L., Coffin, D. R., Onwulata, C. I., & Konstance, R. P. (2004). Extrusion of pectin and glycerol with various combinations of orange albedo and starch. Carbohydrate Polymers, 57, 401–413.

    Article  CAS  Google Scholar 

  • Flores, S., Fama, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International, 40, 257–265. doi:10.1016/j.foodres.2006.02.004.

    Article  CAS  Google Scholar 

  • Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2000). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–947. doi:10.1111/j.1365-2621.2000.tb09397.x.

    Article  CAS  Google Scholar 

  • García, M. A., Pinotti, A., Martino, M. N., & Zaritzky, N. E. (2004). Microstructure, mechanical and barrier properties of composite chitosan and methylcellulose biofilms. Proceedings of the 9th International Conference on Engineering and Food (ICEF9), Montpellier, France, March 7–9, 2004.

  • Gaudin, S., Lourdin, D., Le Botlan, D., Forssell, P., Ilari, J. L., & Colonna, P. (1999). Effect of polymer-plasticizer interactions on the oxygen permeability of starch-sorbitol-water films. Macromolecular Symposia (Polymer–Solvent Complexes and Intercalates II), 138, 245–248.

    Article  CAS  Google Scholar 

  • Gennadios, A. (2002). Protein-based films and coating. Boca Raton: Dekker.

    Book  Google Scholar 

  • Gennadios, A., McHugh, T. H., Weller, C. L., & Krochta, J. M. (1994). Edible coatings and films based on proteins. In J. M. Krochta, E. A. Baldwin & M. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality, Chap. 9, pp. 201–277. Lancaster: Technomic.

    Google Scholar 

  • Giancone, T., Torrieri, E., Di Pierro, P., Mariniello, L., Moresi, M., Porta, R., et al. (2008). Role of constituents on the network formation of hydrocolloid edible films. Journal of Food Engineering, 89, 195–203. doi:10.1016/j.jfoodeng.2008.04.017.

    Article  CAS  Google Scholar 

  • Giancone, T., Torrieri, E., Masi, P., & Michon, C. (2009). Protein-polysaccharide interactions: Phase behaviour of pectin-soy flour mixture. Food Hydrocolloids, 23, 1263–1269. doi:10.1016/j.foodhyd.2008.09.001.

    Article  CAS  Google Scholar 

  • Giosafatto, C. V. L., Mariniello, L., & Ring, S. (2007). Extraction and characterization of Foeniculum vulgare pectins and their use for preparing biopolymer films in the presence of phaseolin protein. Journal of Agricultural and Food Chemistry, 55, 1237–1240. doi:10.1021/jf062725d.

    Article  CAS  Google Scholar 

  • Guilbert, S. (1986). Food packaging and preservation. London: Elsevier Applied Science.

    Google Scholar 

  • Iijima, M., Nakamura, K., Hatakeyama, T., & Hatakwyama, H. (2000). Phase transition of pectin with sorbed water. Carbohydrate Polymers, 41, 101–106. doi:10.1016/S0144-8617(99)00116-2.

    Article  CAS  Google Scholar 

  • Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: A review. Food Technologist, 40, 47–59.

    CAS  Google Scholar 

  • Krochta, J. M., & De Mulder-Johnston, C. (1997). Edible and biodegradable polymer films: Challenges and opportunities. Food Technologist, 51(2), 61–74.

    Google Scholar 

  • Löfgren, C., & Hermansson, A. M. (2007). Synergistic rheological behaviour of mixed HM/LM pectin gels. Food Hydrocolloids, 21, 480–486. doi:10.1016/j.foodhyd.2006.07.005.

    Article  Google Scholar 

  • Lootens, D., Capel, F., Durand, D., Nicolai, T., Boulenguer, P., & Langendorff, V. (2003). Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin. Food Hydrocolloids, 17, 237–244. doi:10.1016/S0268-005X(02)00056-5.

    Article  CAS  Google Scholar 

  • Maftoonazad, N., Ramaswamy, H. S., & Marcotte, M. (2007). Evaluation of factors affecting barrier, mechanical and optical properties of pectin-based film using response surface methodology. Journal of Food Process Engineering, 30, 539–563. doi:10.1111/j.1745-4530.2007.00123.x.

    Article  Google Scholar 

  • Maior, J. F. A. S., Reis, A. V., Muniz, E. C., & Cavalcanti, O. A. (2008). Reaction of pectin and glycidyl methacrylate and ulterior formation of free films by reticulation. International Journal of Pharmaceutics, 335, 184–194. doi:10.1016/j.ijpharm.2007.12.006.

    Article  Google Scholar 

  • McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–902. doi:10.1111/j.1365-2621.1993.tb09387.x.

    Article  CAS  Google Scholar 

  • Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology, 8, 226–237.

    Google Scholar 

  • Nisperos-Carriedo, M. O. (1994). Edible coating and films based on polysaccharides. In J. M. Krochta, E. A. Baldwin & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality. Lancaster: Technomic.

    Google Scholar 

  • Okenfull, D. G. (1991). The chemistry and technology of pectin. In R. H. Walter (Ed.), The chemistry and technology of pectin, pp. 87–108. New York: Academic.

    Google Scholar 

  • Park, S. K., Rhee, C. O., Bae, D. H., & Hettiarachchy, N. S. (2001). Mechanical properties and water-vapor permeability of soy-protein films affected by calcium salts and glucono-δ-lactone. Journal of Agricultural and Food Chemistry, 49, 2308–2312. doi:10.1021/jf0007479.

    Article  CAS  Google Scholar 

  • Psomiadou, E., Arvanitoyannis, I., & Yamoto, N. (1996). Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols; part 2. Carbohydrate Polymers, 31, 194–204. doi:10.1016/S0144-8617(96)00077-X.

    Article  Google Scholar 

  • Reinoso, E., Mittal, G. S., & Lim, L. T. (2008). Influence of Whey protein coatings on Plum (Prunus Domestica L.) fruit quality. Food and Bioprocess Technology, 1, 314–325. doi:10.1007/s11947-007-0014-1.

    Article  Google Scholar 

  • Siew, D. C. W., Heilmann, C., Easteal, A. J., & Cooney, R. P. (1999). Solution and film properties of sodium caseinate/glycerol and sodium caseinate/polyethylene glycol edible coating systems. Journal of Agricultural and Food Chemistry, 47, 3432–3440. doi:10.1021/jf9806311.

    Article  CAS  Google Scholar 

  • Sothornvit, R., & Pitak, N. (2007). Oxygen permeability and mechanical properties of banana films. Food Research International, 40, 365–370. doi:10.1016/j.foodres.2006.10.010.

    Article  CAS  Google Scholar 

  • Sriamornsak, P., & Kennedy, R. A. (2006). A novel gel formation method, microstructure and mechanical properties of calcium polysaccharide gel films. International Journal of Pharmaceutics, 323, 72–80. doi:10.1016/j.ijpharm.2006.05.045.

    Article  CAS  Google Scholar 

  • Stuchell, Y. M., & Krochta, J. M. (1994). Enzymatic treatment and thermal effects on edible soy protein films. Journal of Food Science, 59, 1332–1337. doi:10.1111/j.1365-2621.1994.tb14709.x.

    Article  CAS  Google Scholar 

  • Torrieri, E., Mahajan, P. V., Cavella, S., De Sousa Gallagher, M., Oliveira, F. A. R., & Masi, P. (2009). Mathematical modelling of modified atmosphere package: an engineering approach to design packaging systems for fresh-cut produce. In P. J. Papajorgji, & P. M. Pardalos (Eds.), Advances in modelling agricultural systems (pp. 455–484). US: Springer.

  • Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19, 53–61. doi:10.1016/j.foodhyd.2004.04.014.

    Article  CAS  Google Scholar 

  • Voragen, A. G. J., Pilnik, W., Thibault, J. F., Axelon, M. A. V., & Renard, C. M. G. C. (1995). Pectins. In A. M. Stephan (Ed.), Food polysaccharides and their functional applications, pp. 287–339. New York: Marcel Dekker.

    Google Scholar 

  • Walkinshaw, M. D., & Arnott, S. (1981). Conformations and interactions of pectin. II. Models for junction zone in pectinic acid and calcium pectate gels. Journal of Molecular Biology, 53, 1075–1085. doi:10.1016/0022-2836(81)90468-X.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Torrieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giancone, T., Torrieri, E., Di Pierro, P. et al. Effect of Surface Density on the Engineering Properties of High Methoxyl Pectin-Based Edible Films. Food Bioprocess Technol 4, 1228–1236 (2011). https://doi.org/10.1007/s11947-009-0208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0208-9

Keywords

Navigation