Abstract
A negative, public reaction is growing over the addition of chemical preservatives to liquid foods and beverages to extend their shelf life and to protect against foodborne pathogens. As a physical method, ultraviolet light (UV) irradiation has a positive consumer image and is of interest to the food industry as a low cost non-thermal method of preservation. Recent advances in the science and engineering of UV light irradiation have demonstrated that this technology holds considerable promise as an alternative to traditional thermal pasteurization for liquid foods and ingredients, fresh juices, soft drinks, and beverages. However, its use for treating foods is still limited due to low UV transmittance of liquid foods. The goal of this review is to provide a summary of the basic principles of UV light generation and propagation with emphasis on its applications for liquid food processing. The review includes information on critical product and process factors that affect UV light inactivation and consequently the delivery of a required scheduled process in liquids foods; measuring and modeling of UV inactivation, and the important effects of UV light on overall quality and nutritional value of liquid foods. The commercially available UV light sources and UV reactor designs that were used for liquid foods treatment are reviewed. The research priorities and challenges that need to be addressed for the successful development of UV technology for liquid foods treatment are discussed.



Similar content being viewed by others
References
Altic, L., Rowe, M., & Grant, I. (2007). UV light inactivation of Mycobacterium avium subsp. paratuberculosisin in milk as assessed by FASTPlaque TB phage assay and culture. Applied and Environmental Microbiology, 73(11), 3728–3733. doi:10.1128/AEM.00057-07.
Anonymous. (1999) A food additive petition for the use of ultraviolet light in the reduction of microorganisms on juice products. Submitted to FDA regarding CFR 21 179. Glendore Calif. California Day-Fresh Foods Inc, 1–117.
Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P., & Guillard, C. (2007). Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Applied Catalysis Environmental, 76, 257–263. doi:10.1016/j.apcatb.2007.05.026.
Cairns, B. (2006). UV dose required to achieve incremental log inactivation of bacteria, protozoa and viruses. IUVA News, 8(1), 38–45.
Chang, J. C. H., Ossoff, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Qualls, R. G., et al. (1985). UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology, 49(1), 1361–1365.
Chiu, K., Lyn, D. A., Savoye, P., & Blatchley, E. R. (1999). Effect of UV system modification on disinfection performance. Journal of Environmental Engineering, 125, 7–16. doi:10.1061/(ASCE)0733-9372(1999)125:1(7).
Christenen, J., & Linden, K. (2001). Ultraviolet disinfection of unfiltered drinking water: particle impacts. Conference Proceedings of First International Congress on UV technologies. IUVA, Washington, DC, June 14–16.
Clarke, S. (2006) Ultraviolet light disinfection in the use of individual water purification devices. Technical paper TIP #31-006-0206 15.
Collins, H. F., & Selleck, R. E. (1972). Process kinetics of wastewater chlorination, SERL Rep., Univ. of Calif., Berkeley, 72–5.
Dean, W. R. (1927). Motion of fluid in a curved pipe. Philosophical Magazine and Journal of Science, 4, 208–223.
EPA, Office of Water. (1995) National Primary Drinking Water Regulations Contaminant Fact Sheets Inorganic Chemicals—Technical Version. EPA 811-F-95-002-T, Washington, D.C.
Fan, X., & Geveke, D. (2007). Furan formation in sugar solution and apple cider upon ultraviolet treatment. Journal of Agricultural and Food Chemistry, 55(19), 7816–7821. doi:10.1021/jf071366z.
Forney, L., Pierson, J. A., & Ye, Z. (2004). Juice irradiation with Taylor–Coutte Flow: UV inactivation of Escherichia coli. Journal of Food Protection, 67(11), 2410–2415.
Geveke, D. (2005). UV inactivation of bacteria in apple cider. Journal of Food Protection, 68(8), 1739–1742.
Geveke, D. (2008). UV inactivation of E. coli in liquid egg white. Food and Bioprocess TechnologyFood Bioprocess Technol, 1(2), 201–206. doi:10.1007/s11947-008-0070-1.
Guerrero-Beltran, J. A., & Barbosa-Canovas, G. V. (2006). Reduction of Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by ultraviolet light. Journal Of Food Process Engineering, 28, 437–452. doi:10.1111/j.1745-4530.2005.00040.x.
Hanes, D. E., Orlandi, D. H., Burr, M. D., Miliotis, M. G., Robi, J. W., Bier, G. J., et al. (2002). Inactivation of Crytosporidium parvum oocysts in fresh apple cider using ultraviolet irradiation. Applied and Environmental Microbiology, 68, 4168–4172. doi:10.1128/AEM.68.8.4168-4172.2002.
Harris, G. D., Adams, V. D., Sorensen, D. L., & Curti, M. S. (1987). Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Water Research, 21, 687–692. doi:10.1016/0043-1354(87)90080-7.
Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40, 3–22. doi:10.1016/j.watres.2005.10.030.
Hoyer, O. (1998). Testing performance and monitoring of UV systems for drinking water disinfection. Water Supply, 16(1/2), 424–429.
Jyoti, K., & Pandit, A. (2004). Ozone and cavitation for water disinfection. Biochemical Engineering Journal, 18, 9–19. doi:10.1016/S1369-703X(03)00116-5.
Keyser, M., Müller, I., Cilliers, F. -P., Nelb, W., & Gouwsa, P. -A. (2008). UV radiation as a nonthermal treatment for the inactivation of microorganisms in fruit juices. Innovative Food Science and Emerging Technologies, 9, 348–354.
Koutchma, T. (2008). UV-light for processing foods. Ozone: Science And Engineering, 30(1), 93–98. doi:10.1080/01919510701816346.
Koutchma, T., & Parisi, B. (2004). Biodosimetry of Escherichia coli UV inactivation in model juices with regard to dose distribution in annular UV reactors. Journal of Food Science, 69(1), E14–E22.
Koutchma, T., Keller, S., Parisi, B., & Chirtel, S. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies, 5, 179–189. doi:10.1016/j.ifset.2004.01.004.
Koutchma, T., Parisi, B., & Patazca, E. (2007). Validation of UV coiled tube reactor for fresh fruit juices. Journal of Environmental Engineering, 6, 319–328. doi:10.1139/S06-058.
Kowalski, W. J. (2001). Design and optimization of UVGI air disinfection system, Ph.D. thesis, Pennsylvania State University.
Kuo, J., Chen, C., & Nellor, M. (2003). Standardized collimated beam testing protocol for water wastewater ultraviolet disinfection. Journal of Environmental Engineering, 8, 773–779.
Masschelein, W. J. (2002). Ultraviolet light in water and wastewater sanitation. Boca Raton: CRC.
Matak, K. E., Sumner, S. S., Duncan, S. E., Hovingh, E., Worobo, R. W., Hackney, C. R., et al. (2007). Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science, 90, 3178–3186. doi:10.3168/jds.2006-642.
Meier, J., Slater, A., Bourgeous, K., & Salveson, A. (2007). Microwave UV—The future of UV disinfection. Los Angeles: UV and Ozone World Congress.
Murakami, E., Jackson, L., Madsen, K., & Schickedanz, B. (2006). Factors affecting the ultraviolet inactivation of Escherichia coli K12 in apple juice and a model system. Journal of Food Process Engineering, 29, 53–71. doi:10.1111/j.1745-4530.2006.00049.x.
Ngadi, M., Smith, J., & Cayouette, B. (2003). Kinetics of ultraviolet light inactivation of Escherichia coli O157:H7 in liquid foods. Journal of the Science of Food and Agriculture, 83, 1551–1555. doi:10.1002/jsfa.1577.
Oms-Oliu, G., Martín-Belloso1, O., & Soliva-Fortuny1, R. (2009). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology (in press). doi:10.1007/s11947-008-0147-x.
Oteiza, J., Peltzer, M., Gannuzzi, L., & Zaritzky, N. (2005). Antimicrobial efficacy of UV radiation on Escherichia coli O157:H7 in fruit juices of different absorptivities. Journal of Food Protection, 68(1), 49–58.
Ozer, N., & Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-treatment. International Journal of Food Science & Technology, 41, 354–360. doi:10.1111/j.1365-2621.2005.01071.x.
Qualls, R., Flynn, M. P., & Johnson, J. D. (1983). The role of suspended particles in ultraviolet disinfection. Journal of Water Pollution Control Federation, 55, 1280–1285.
Schaefer, R., Grapperhaus, M., & Linden, K. (2007). Status report on the development and use of pulsed UV technologies for treating water. Los Angeles: UV and Ozone World Congress.
Severin, B. F., Suidan, M. T., & Engelbrecht, R. S. (1983). Kinetic modeling of UV disinfection of water. Water Research, 17(11), 1669–1678. doi:10.1016/0043-1354(83)90027-1.
Sommer, R., Haider, T., Cabaj, A., Pribil, W., & Lhotsky, M. (1998). Time fluence reciprocity in UV disinfection of water. Water Science And Technology, 38(12), 145–50. doi:10.1016/S0273-1223(98)00816-6.
Sommers, R., Weber, G., Cabaj, A., Wekerle, J., Keck, G., & Schauberger, G. (1989). UV inactivation of microorganisms in water. Zentralblatt fur Hygiene und Umweltmedizin, 189, 214–24.
Spikes, J. (1981). Photodegradation of foods and beverages. In K. C. Smith (Ed.), Photochemical and Photobiological Reviews (vol. 6, (pp. 39–81Plenum)). New York.
Supplement to Journal of Food Protection (2006) NACMCF requisite scientific parameters for establishing alternative methods of pasteurization, 69(5), 1190–1216.
Tandon, K., Worobo, R., Churley, J., & Padilla-Zakour, O. (2003). Storage quality of pasteurized and UV treated apple cider. Journal of Food Processing and Preservation, 27, 21–35. doi:10.1111/j.1745-4549.2003.tb00498.x.
Thiruvenkatachari, R., Ouk Kwon, T., & Shik Moon, I. (2006). Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering, 41, 1685–1697.
Tran, M. T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies, 5(4), 495–502. doi:10.1016/j.ifset.2004.08.002.
U.S. Food and Drug Administration (2000). 21 CFR Part 179. Irradiation in the production, processing and handling of food. Federal Register, 65, 71056–71058.
U.S. Food and Drug Administration. Code 21CFR179.41 Title 21—Food and drugs (page 438) Part 179—Irradiation in the production, processing and handling of food. Subpart B—Radiation and radiation sources. Sec. 179.41 Pulsed light for the treatment of food.
Unluturk, S., Koutchma, T., & Arastoopour, H. (2004). Modeling of UV dose distribution in a thin film UV reactor for processing of apple cider. Journal of Food Processing, 65(1), 125–136.
Unluturk, S., Mehmet, R., Atılgan, A., Baysal, H., & Tarı, C. (2008). Use of UV-C radiation as a non-thermal process for liquid egg products (LEP). Journal of Food Engineering, 85, 561–568. doi:10.1016/j.jfoodeng.2007.08.017.
Voronov, A. (2007). New generation of low pressure mercury lamps for producing ozone. Los Angeles: UV and Ozone World Congress.
Warriner, K., Rysstad, G., Murden, A., Rumsby, P., Thomas, D., & Waites, W. (2000). Inactivation of Bacillus subtilis spores on aluminum and polyethylene preformed cartons by UV-excimer laser irradiation. Journal of Food Protection, 63, 753–757.
Warriner, K., Kolstad, J., Rumsby, J., & Waites, W. (2002). Carton sterilization by UV-C excimer laser light: Recovery of Bacillus subtilis spores on vegetable extracts and food simulation matrices. Journal of Applied Microbiology, 92, 1051–1057. doi:10.1046/j.1365-2672.2002.01641.x.
Woodling, S. E., & Moraru, C. I. (2005). Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless steel surfaces. Journal of Food Science, 70(7), 345–51. doi:10.1111/j.1365-2621.2005.tb11478.x.
Worobo, R. (1999). Efficacy of the CiderSure 3500 Ultraviolet light unit in apple cider. CFSAN Apple cider food safety control workshop.
Wright, J. R., Sumner, S. S., Hackney, C. R., Pierson, M. D., & Zoecklein, B. W. (2000). Efficacy of ultraviolet light for reducing Escherichia coli O157:H7 in unpasteurized apple cider. Journal of Food Protection, 63, 563–567.
Xie, Y., Hajdok, C., Mittal, G., & Warriner K. (2008). Inactivation of MS2 F(+) coliphage on lettuce by a combination of UV light and hydrogen peroxide. Journal of Food Protection, 71(5), 903–907.
Ye, Z. (2007). UV disinfection between concentric cylinders, Ph.D. thesis, Georgia Institute of Technology.
Ye, Z., Koutchma, T., Parisi, B., Larkin, J., & Forney, L. (2007). Ultraviolet inactivation kinetics of E. coli and Y. pseudotuberculosis in annular reactors. Journal of Food Science, 72(5), E271–E278.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Koutchma, T. Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods. Food Bioprocess Technol 2, 138–155 (2009). https://doi.org/10.1007/s11947-008-0178-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-008-0178-3