Skip to main content

Advertisement

Log in

Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A negative, public reaction is growing over the addition of chemical preservatives to liquid foods and beverages to extend their shelf life and to protect against foodborne pathogens. As a physical method, ultraviolet light (UV) irradiation has a positive consumer image and is of interest to the food industry as a low cost non-thermal method of preservation. Recent advances in the science and engineering of UV light irradiation have demonstrated that this technology holds considerable promise as an alternative to traditional thermal pasteurization for liquid foods and ingredients, fresh juices, soft drinks, and beverages. However, its use for treating foods is still limited due to low UV transmittance of liquid foods. The goal of this review is to provide a summary of the basic principles of UV light generation and propagation with emphasis on its applications for liquid food processing. The review includes information on critical product and process factors that affect UV light inactivation and consequently the delivery of a required scheduled process in liquids foods; measuring and modeling of UV inactivation, and the important effects of UV light on overall quality and nutritional value of liquid foods. The commercially available UV light sources and UV reactor designs that were used for liquid foods treatment are reviewed. The research priorities and challenges that need to be addressed for the successful development of UV technology for liquid foods treatment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altic, L., Rowe, M., & Grant, I. (2007). UV light inactivation of Mycobacterium avium subsp. paratuberculosisin in milk as assessed by FASTPlaque TB phage assay and culture. Applied and Environmental Microbiology, 73(11), 3728–3733. doi:10.1128/AEM.00057-07.

    Article  CAS  Google Scholar 

  • Anonymous. (1999) A food additive petition for the use of ultraviolet light in the reduction of microorganisms on juice products. Submitted to FDA regarding CFR 21 179. Glendore Calif. California Day-Fresh Foods Inc, 1–117.

  • Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P., & Guillard, C. (2007). Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Applied Catalysis Environmental, 76, 257–263. doi:10.1016/j.apcatb.2007.05.026.

    Article  CAS  Google Scholar 

  • Cairns, B. (2006). UV dose required to achieve incremental log inactivation of bacteria, protozoa and viruses. IUVA News, 8(1), 38–45.

    Google Scholar 

  • Chang, J. C. H., Ossoff, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Qualls, R. G., et al. (1985). UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology, 49(1), 1361–1365.

    CAS  Google Scholar 

  • Chiu, K., Lyn, D. A., Savoye, P., & Blatchley, E. R. (1999). Effect of UV system modification on disinfection performance. Journal of Environmental Engineering, 125, 7–16. doi:10.1061/(ASCE)0733-9372(1999)125:1(7).

    Article  CAS  Google Scholar 

  • Christenen, J., & Linden, K. (2001). Ultraviolet disinfection of unfiltered drinking water: particle impacts. Conference Proceedings of First International Congress on UV technologies. IUVA, Washington, DC, June 14–16.

  • Clarke, S. (2006) Ultraviolet light disinfection in the use of individual water purification devices. Technical paper TIP #31-006-0206 15.

  • Collins, H. F., & Selleck, R. E. (1972). Process kinetics of wastewater chlorination, SERL Rep., Univ. of Calif., Berkeley, 72–5.

  • Dean, W. R. (1927). Motion of fluid in a curved pipe. Philosophical Magazine and Journal of Science, 4, 208–223.

    Google Scholar 

  • EPA, Office of Water. (1995) National Primary Drinking Water Regulations Contaminant Fact Sheets Inorganic Chemicals—Technical Version. EPA 811-F-95-002-T, Washington, D.C.

  • Fan, X., & Geveke, D. (2007). Furan formation in sugar solution and apple cider upon ultraviolet treatment. Journal of Agricultural and Food Chemistry, 55(19), 7816–7821. doi:10.1021/jf071366z.

    Article  CAS  Google Scholar 

  • Forney, L., Pierson, J. A., & Ye, Z. (2004). Juice irradiation with Taylor–Coutte Flow: UV inactivation of Escherichia coli. Journal of Food Protection, 67(11), 2410–2415.

    CAS  Google Scholar 

  • Geveke, D. (2005). UV inactivation of bacteria in apple cider. Journal of Food Protection, 68(8), 1739–1742.

    Google Scholar 

  • Geveke, D. (2008). UV inactivation of E. coli in liquid egg white. Food and Bioprocess TechnologyFood Bioprocess Technol, 1(2), 201–206. doi:10.1007/s11947-008-0070-1.

    Article  Google Scholar 

  • Guerrero-Beltran, J. A., & Barbosa-Canovas, G. V. (2006). Reduction of Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by ultraviolet light. Journal Of Food Process Engineering, 28, 437–452. doi:10.1111/j.1745-4530.2005.00040.x.

    Article  Google Scholar 

  • Hanes, D. E., Orlandi, D. H., Burr, M. D., Miliotis, M. G., Robi, J. W., Bier, G. J., et al. (2002). Inactivation of Crytosporidium parvum oocysts in fresh apple cider using ultraviolet irradiation. Applied and Environmental Microbiology, 68, 4168–4172. doi:10.1128/AEM.68.8.4168-4172.2002.

    Article  CAS  Google Scholar 

  • Harris, G. D., Adams, V. D., Sorensen, D. L., & Curti, M. S. (1987). Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Water Research, 21, 687–692. doi:10.1016/0043-1354(87)90080-7.

    Article  CAS  Google Scholar 

  • Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40, 3–22. doi:10.1016/j.watres.2005.10.030.

    Article  CAS  Google Scholar 

  • Hoyer, O. (1998). Testing performance and monitoring of UV systems for drinking water disinfection. Water Supply, 16(1/2), 424–429.

    CAS  Google Scholar 

  • Jyoti, K., & Pandit, A. (2004). Ozone and cavitation for water disinfection. Biochemical Engineering Journal, 18, 9–19. doi:10.1016/S1369-703X(03)00116-5.

    Article  CAS  Google Scholar 

  • Keyser, M., Müller, I., Cilliers, F. -P., Nelb, W., & Gouwsa, P. -A. (2008). UV radiation as a nonthermal treatment for the inactivation of microorganisms in fruit juices. Innovative Food Science and Emerging Technologies, 9, 348–354.

    Article  CAS  Google Scholar 

  • Koutchma, T. (2008). UV-light for processing foods. Ozone: Science And Engineering, 30(1), 93–98. doi:10.1080/01919510701816346.

    Article  CAS  Google Scholar 

  • Koutchma, T., & Parisi, B. (2004). Biodosimetry of Escherichia coli UV inactivation in model juices with regard to dose distribution in annular UV reactors. Journal of Food Science, 69(1), E14–E22.

    Google Scholar 

  • Koutchma, T., Keller, S., Parisi, B., & Chirtel, S. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies, 5, 179–189. doi:10.1016/j.ifset.2004.01.004.

    Article  Google Scholar 

  • Koutchma, T., Parisi, B., & Patazca, E. (2007). Validation of UV coiled tube reactor for fresh fruit juices. Journal of Environmental Engineering, 6, 319–328. doi:10.1139/S06-058.

    Article  CAS  Google Scholar 

  • Kowalski, W. J. (2001). Design and optimization of UVGI air disinfection system, Ph.D. thesis, Pennsylvania State University.

  • Kuo, J., Chen, C., & Nellor, M. (2003). Standardized collimated beam testing protocol for water wastewater ultraviolet disinfection. Journal of Environmental Engineering, 8, 773–779.

    Google Scholar 

  • Masschelein, W. J. (2002). Ultraviolet light in water and wastewater sanitation. Boca Raton: CRC.

    Google Scholar 

  • Matak, K. E., Sumner, S. S., Duncan, S. E., Hovingh, E., Worobo, R. W., Hackney, C. R., et al. (2007). Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science, 90, 3178–3186. doi:10.3168/jds.2006-642.

    Article  CAS  Google Scholar 

  • Meier, J., Slater, A., Bourgeous, K., & Salveson, A. (2007). Microwave UV—The future of UV disinfection. Los Angeles: UV and Ozone World Congress.

    Google Scholar 

  • Murakami, E., Jackson, L., Madsen, K., & Schickedanz, B. (2006). Factors affecting the ultraviolet inactivation of Escherichia coli K12 in apple juice and a model system. Journal of Food Process Engineering, 29, 53–71. doi:10.1111/j.1745-4530.2006.00049.x.

    Article  Google Scholar 

  • Ngadi, M., Smith, J., & Cayouette, B. (2003). Kinetics of ultraviolet light inactivation of Escherichia coli O157:H7 in liquid foods. Journal of the Science of Food and Agriculture, 83, 1551–1555. doi:10.1002/jsfa.1577.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Martín-Belloso1, O., & Soliva-Fortuny1, R. (2009). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology (in press). doi:10.1007/s11947-008-0147-x.

  • Oteiza, J., Peltzer, M., Gannuzzi, L., & Zaritzky, N. (2005). Antimicrobial efficacy of UV radiation on Escherichia coli O157:H7 in fruit juices of different absorptivities. Journal of Food Protection, 68(1), 49–58.

    Google Scholar 

  • Ozer, N., & Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-treatment. International Journal of Food Science & Technology, 41, 354–360. doi:10.1111/j.1365-2621.2005.01071.x.

    Article  CAS  Google Scholar 

  • Qualls, R., Flynn, M. P., & Johnson, J. D. (1983). The role of suspended particles in ultraviolet disinfection. Journal of Water Pollution Control Federation, 55, 1280–1285.

    CAS  Google Scholar 

  • Schaefer, R., Grapperhaus, M., & Linden, K. (2007). Status report on the development and use of pulsed UV technologies for treating water. Los Angeles: UV and Ozone World Congress.

    Google Scholar 

  • Severin, B. F., Suidan, M. T., & Engelbrecht, R. S. (1983). Kinetic modeling of UV disinfection of water. Water Research, 17(11), 1669–1678. doi:10.1016/0043-1354(83)90027-1.

    Article  Google Scholar 

  • Sommer, R., Haider, T., Cabaj, A., Pribil, W., & Lhotsky, M. (1998). Time fluence reciprocity in UV disinfection of water. Water Science And Technology, 38(12), 145–50. doi:10.1016/S0273-1223(98)00816-6.

    Article  CAS  Google Scholar 

  • Sommers, R., Weber, G., Cabaj, A., Wekerle, J., Keck, G., & Schauberger, G. (1989). UV inactivation of microorganisms in water. Zentralblatt fur Hygiene und Umweltmedizin, 189, 214–24.

    Google Scholar 

  • Spikes, J. (1981). Photodegradation of foods and beverages. In K. C. Smith (Ed.), Photochemical and Photobiological Reviews (vol. 6, (pp. 39–81Plenum)). New York.

  • Supplement to Journal of Food Protection (2006) NACMCF requisite scientific parameters for establishing alternative methods of pasteurization, 69(5), 1190–1216.

  • Tandon, K., Worobo, R., Churley, J., & Padilla-Zakour, O. (2003). Storage quality of pasteurized and UV treated apple cider. Journal of Food Processing and Preservation, 27, 21–35. doi:10.1111/j.1745-4549.2003.tb00498.x.

    Article  Google Scholar 

  • Thiruvenkatachari, R., Ouk Kwon, T., & Shik Moon, I. (2006). Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering, 41, 1685–1697.

    CAS  Google Scholar 

  • Tran, M. T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies, 5(4), 495–502. doi:10.1016/j.ifset.2004.08.002.

    Article  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2000). 21 CFR Part 179. Irradiation in the production, processing and handling of food. Federal Register, 65, 71056–71058.

    Google Scholar 

  • U.S. Food and Drug Administration. Code 21CFR179.41 Title 21—Food and drugs (page 438) Part 179—Irradiation in the production, processing and handling of food. Subpart B—Radiation and radiation sources. Sec. 179.41 Pulsed light for the treatment of food.

  • Unluturk, S., Koutchma, T., & Arastoopour, H. (2004). Modeling of UV dose distribution in a thin film UV reactor for processing of apple cider. Journal of Food Processing, 65(1), 125–136.

    Google Scholar 

  • Unluturk, S., Mehmet, R., Atılgan, A., Baysal, H., & Tarı, C. (2008). Use of UV-C radiation as a non-thermal process for liquid egg products (LEP). Journal of Food Engineering, 85, 561–568. doi:10.1016/j.jfoodeng.2007.08.017.

    Article  Google Scholar 

  • Voronov, A. (2007). New generation of low pressure mercury lamps for producing ozone. Los Angeles: UV and Ozone World Congress.

    Google Scholar 

  • Warriner, K., Rysstad, G., Murden, A., Rumsby, P., Thomas, D., & Waites, W. (2000). Inactivation of Bacillus subtilis spores on aluminum and polyethylene preformed cartons by UV-excimer laser irradiation. Journal of Food Protection, 63, 753–757.

    CAS  Google Scholar 

  • Warriner, K., Kolstad, J., Rumsby, J., & Waites, W. (2002). Carton sterilization by UV-C excimer laser light: Recovery of Bacillus subtilis spores on vegetable extracts and food simulation matrices. Journal of Applied Microbiology, 92, 1051–1057. doi:10.1046/j.1365-2672.2002.01641.x.

    Article  CAS  Google Scholar 

  • Woodling, S. E., & Moraru, C. I. (2005). Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless steel surfaces. Journal of Food Science, 70(7), 345–51. doi:10.1111/j.1365-2621.2005.tb11478.x.

    Article  Google Scholar 

  • Worobo, R. (1999). Efficacy of the CiderSure 3500 Ultraviolet light unit in apple cider. CFSAN Apple cider food safety control workshop.

  • Wright, J. R., Sumner, S. S., Hackney, C. R., Pierson, M. D., & Zoecklein, B. W. (2000). Efficacy of ultraviolet light for reducing Escherichia coli O157:H7 in unpasteurized apple cider. Journal of Food Protection, 63, 563–567.

    CAS  Google Scholar 

  • Xie, Y., Hajdok, C., Mittal, G., & Warriner K. (2008). Inactivation of MS2 F(+) coliphage on lettuce by a combination of UV light and hydrogen peroxide. Journal of Food Protection, 71(5), 903–907.

    CAS  Google Scholar 

  • Ye, Z. (2007). UV disinfection between concentric cylinders, Ph.D. thesis, Georgia Institute of Technology.

  • Ye, Z., Koutchma, T., Parisi, B., Larkin, J., & Forney, L. (2007). Ultraviolet inactivation kinetics of E. coli and Y. pseudotuberculosis in annular reactors. Journal of Food Science, 72(5), E271–E278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Koutchma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutchma, T. Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods. Food Bioprocess Technol 2, 138–155 (2009). https://doi.org/10.1007/s11947-008-0178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0178-3

Keywords