Skip to main content
Log in

Molecular Imaging for Evaluation of Viable Testicular Cancer Nodal Metastases

  • New Imaging Techniques (S Rais-Bahrami and K Porter, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Determining the metastatic viability of suspicious retroperitoneal nodes in testicular cancer with conventional imaging is challenging. The aim of this report is to review recent evidence in the utilization of novel imaging modalities to assess viable testicular cancer nodal metastases.

Recent Evidence

Testicular germ cell tumors (TCGTs) follow a predictable lymphatic metastatic spread to the retroperitoneum. Accordingly, retroperitoneal imaging is critical in staging, assessing treatment response, and evaluating for recurrence. Conventional computed tomography (CT) imaging is effective in diagnosing pathologically enlarged lymph nodes but lacks the molecular information to determine if suspicious nodes harbor viable tumor. Positron emission tomography (PET) with the metabolic radiotracer 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG or FDG) has been shown to be useful in determining the presence of or absence of viable tumor after chemotherapy for seminoma, but its role with non-seminomatous germ cell tumors (NSGCTs) and other clinical scenarios is limited. Patients with residual masses after chemotherapy for NSGCT present a difficult challenge because surgical resection carries a high degree of morbidity despite many patients only harboring fibrosis on final pathology. Current imaging modalities are unable to effectively differentiate fibrosis from viable tumor on preoperative imaging. Novel molecular imaging techniques present promising opportunities to improve diagnosis in these patients.

Summary

Novel imaging platforms have potential to improve the ability to determine viable nodal metastases regardless of size and structure but confirmatory studies are currently lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clin [Internet]. 2018 [cited 2018 Jun 10];68(1):7–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29313949.

  2. McGlynn KA, Devesa SS, Graubard BI, Castle PE. Increasing incidence of testicular germ cell tumors among black men in the United States. J Clin Oncol. 2005;23(24):5757–61.

    Article  Google Scholar 

  3. Powles TB, Bhardwa J, Shamash J, Mandalia S, Oliver T. The changing presentation of germ cell tumours of the testis between 1983 and 2002. BJU Int. 2005;95(9):1197–200.

    Article  Google Scholar 

  4. Noone AM, Howlader N, Krapcho M, Miller D, Brest A, Yu M, et al. SEER cancer statistics review, 1975-2015. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/csr/1975_2

  5. Stephenson AJ, Gilligan TD. Neoplasms of the Testis. Campbell-Walsh Urology 11th Edition:34:784–814.

  6. Sheinfeld J. Nonseminomatous germ cell tumors of the testis: current concepts and controversies. Urology. 1994;44(1):2–14.

    Article  CAS  Google Scholar 

  7. Gilligan T, Beard C, Chism D, Cost N, Derweesh IH, Emamekhoo H, et al. NCCN Guidelines Version 2.2018 Testicular Cancer NCCN Guidelines 2018 Available from: https://www.nccn.org/professionals/physician_gls/pdf/testicular.pdf

  8. Kreydin EI, Barrisford GW, Feldman AS, Preston MA. Testicular cancer: what the radiologist needs to know. Am J Roentgenol. 2013;200(6):1215–25.

    Article  Google Scholar 

  9. Hilton S, Herr HW, Teitcher JB, Begg CB, Castéllino RA. CT detection of retroperitoneal lymph node metastases in patients with clinical stage I testicular nonseminomatous germ cell cancer: assessment of size and distribution criteria. AJR Am J Roentgenol. 1997;169(2):521–5.

    Article  CAS  Google Scholar 

  10. Hudolin T, Kastelan Z, Knezevic N, Goluza E, Tomas D, Coric M. Correlation between retroperitoneal lymph node size and presence of metastases in nonseminomatous germ cell tumors. Int J Surg Pathol. 2012;20(1):15–8.

    Article  Google Scholar 

  11. Fosså SD, Aass N, Ous S, Høie J, Stenwig AE, Lien HH, et al. Histology of tumor residuals following chemotherapy in patients with advanced nonseminomatous testicular cancer. J Urol. 1989;142(5):1239–42.

    Article  Google Scholar 

  12. Steyerberg EW, Keizer HJ, Fosså SD, Sleijfer DT, Toner GC, Schraffordt Koops H, et al. Prediction of residual retroperitoneal mass histology after chemotherapy for metastatic nonseminomatous germ cell tumor: multivariate analysis of individual patient data from six study groups. J Clin Oncol. 1995;13(5):1177–87.

    Article  CAS  Google Scholar 

  13. Steyerberg EW, Keizer HJ, Sleijfer DT, Fosså SD, Bajorin DF, Gerl A, et al. Retroperitoneal metastases in testicular cancer: role of CT measurements of residual masses in decision making for resection after chemotherapy. Radiology. 2000;2:437–44.

    Article  Google Scholar 

  14. Ellis JH, Bies JR, Kopecky KK, Klatte EC, Rowland RG, Donohue JP. Comparison of NMR and CT imaging in the evaluation of metastatic retroperitoneal lymphadenopathy from testicular carcinoma. J Comput Assist Tomogr. 1984;8(4):709–19.

    Article  CAS  Google Scholar 

  15. Mosavi F, Laurell A, Ahlström H. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer. Acta Oncol. 2015;54(10):1763–9.

    Article  Google Scholar 

  16. Hogeboom WR, Hoekstra HJ, Mooyaart EL, Sleijfer DT, Schraffordt KH. Magnetic resonance imaging of retroperitoneal lymph node metastases of non-seminomatous germ cell tumours of the testis. Eur J Surg Oncol. 1993;19(5):429–37.

    CAS  PubMed  Google Scholar 

  17. Sohaib SA, Koh DM, Barbachano Y, Parikh J, Husband JES, Dearnaley DP, et al. Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours. Clin Radiol. 2009;4:362–7.

    Article  Google Scholar 

  18. Tandstad T, Dahl O, Cohn-Cedermark G, Cavallin-Stahl E, Stierner U, Solberg A, et al. Risk-adapted treatment in clinical stage I nonseminomatous germ cell testicular cancer: the SWENOTECA management program. J Clin Oncol. 2009;27(13):2122–8.

    Article  Google Scholar 

  19. Pierorazio PM, Albers P, Black PC, Tandstad T, Heidenreich A, Nicolai N, et al. Non–risk-adapted surveillance for stage I testicular cancer: critical review and summary. Eur Urol. 2018;73(6):899–907.

    Article  Google Scholar 

  20. Dalal PU, Sohaib SA, Huddart R. Imaging of testicular germ cell tumours. Cancer Imaging. 2006;6(1):124–34.

    Article  CAS  Google Scholar 

  21. Nanni C, Zanoni L, Fanti S. Nuclear medicine in urological cancers: what is new? Future Oncol. 2014;10(13):2061–72.

    Article  CAS  Google Scholar 

  22. Huddart RA, Doherty MJO, Padhani A, Rustin GJS, Mead GM, Joffe JK, et al. Fluorodeoxyglucose positron emission tomography in the prediction of relapse in patients with high-risk , clinical stage I nonseminomatous germ cell tumors : preliminary report of MRC Trial TE22 — the NCRI Testis Tumour Clinical Study Group. J Clin Oncol 2007;25(21).

  23. De Wit M, Brenner W, Hartmann M, Kotzerke J, Hellwig D, Lehmann J, et al. [18F]-FDG-PET in clinical stage I/II non-seminomatous germ cell tumours: results of the German multicentre trial. Ann Oncol. 2008;19:1619–23.

    Article  Google Scholar 

  24. • Ambrosini V, Zucchini G, Nicolini S, Berselli A, Nanni C, Allegri V, et al. 18F-FDG PET/CT impact on testicular tumours clinical management. Eur J Nucl Med Mol Imaging. 2014;41(4):668–73 Important series of patients studying performance characteristics of FDG PET in staging and restaging setting and determining clinical impact.

    Article  CAS  Google Scholar 

  25. De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Sellner F, et al. 2- 18 fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET Trial. J Clin Oncol. 2004;22(6):1034–9.

    Article  Google Scholar 

  26. Bachner M, Loriot Y, Gross-Goupil M, Zucali PA, Horwich A, Germa-Lluch J-R, et al. 2-18fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions: a retrospective validation of the SEMPET trial. Ann Oncol. 2012;23(1):59–64.

    Article  CAS  Google Scholar 

  27. Treglia G, Sadeghi R, Annunziata S, Caldarella C, Bertagna F, Giovanella L. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: systematic review and meta-analysis. Biomed Res Int 2014:852681.

    Article  Google Scholar 

  28. Necchi A, Nicolai N, Alessi A, Miceli R, Giannatempo P, Raggi D, et al. Interim 18F-Fluorodeoxyglucose positron emission tomography for early metabolic assessment of response to cisplatin, etoposide, and bleomycin chemotherapy for metastatic seminoma: clinical value and future directions. Clin Genitourin Cancer. 2016;14(3):249–54.

    Article  Google Scholar 

  29. Oechsle K, Hartmann M, Brenner W, Venz S, Weissbach L, Franzius C, et al. [18F]Fluorodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. J Clin Oncol. 2008;26(36):5930–5.

    Article  Google Scholar 

  30. Bouchelouche K, Choyke PL. PET/computed tomography in renal, bladder, and testicular cancer. PET Clin. 2015;10(3):361–74.

    Article  Google Scholar 

  31. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.

    Article  CAS  Google Scholar 

  32. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44(9):1426–31.

    CAS  PubMed  Google Scholar 

  33. Francis DL, Visvikis D, Costa DC, Arulampalam THA, Townsend C, Luthra SK, et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging. 2003;7:988–94.

    Google Scholar 

  34. Pfannenberg C, Aschoff P, Dittmann H, Mayer F, Reischl G, von Weyhern C, et al. PET/CT with 18F-FLT: does it improve the therapeutic management of metastatic germ cell tumors? J Nucl Med. 2010;51(6):845–53.

    Article  Google Scholar 

  35. Cremerius U, Effert PJ, Adam G, Sabri O, Zimmy M, Wagenknecht G, et al. FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med. 1998;39(5):815–22.

    CAS  PubMed  Google Scholar 

  36. Hain SF, O’Doherty MJ, Timothy AR, Leslie MD, Harper PG, Huddart RA. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer. 2000;83(7):863–9.

    Article  CAS  Google Scholar 

  37. •• Sharma P, Jain TK, Parida GK, Karunanithi S, Patel C, Sharma A, et al. Diagnostic accuracy of integrated 18 F-FDG PET/CT for restaging patients with malignant germ cell tumours. Br J Radiol. 2014;87(1040):20140263 Interesting study assessing FDG PET in the work up of recurrent GCT revealing potential role for PET in setting of negative conventional imaging.

    Article  CAS  Google Scholar 

  38. • Alongi P, Evangelista L, Caobelli F, Spallino M, Gianolli L, Midiri M, et al. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma. Eur J Nucl Med Mol Imaging. 2018;45(1):85–94 Larger study revealing high accuracy of FDG PET imaging in detecting metastatic lymph nodes during suspected GCT recurrence.

    Article  CAS  Google Scholar 

  39. Rockall AG, Sohaib SA, Harisinghani MG, Babar SA, Singh N, Jeyarajah AR, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 2005;23(12):2813–21.

    Article  Google Scholar 

  40. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, et al. Evaluation of neck and body metastases to nodes with Ferumoxtran 10–enhanced MR imaging: phase III safety and efficacy study. Radiology. 2003;3:777–88.

    Article  Google Scholar 

  41. Koh D-M, Brown G, Temple L, Raja A, Toomey P, Bett N, et al. Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings—initial observations. Radiology. 2004;231(1):91–9.

    Article  Google Scholar 

  42. Bellin M-F, Lebleu L, Meric J-B. Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MR lymphangiography. Abdom Imaging. 2003;28(2):155–63.

    Article  CAS  Google Scholar 

  43. Bellin M-F, Beigelman C, Precetti-Morel S. Iron oxide-enhanced MR lymphography: initial experience. Eur J Radiol. 2000;34:257–64.

    Article  CAS  Google Scholar 

  44. Wu L, Cao Y, Liao C, Huang J, Gao F. Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J Radiol. 2011;80(2):582–9.

    Article  Google Scholar 

  45. Lebastchi AH, Watson MJ, Russell CM, George AK, Weizer AZ, Turkbey B. Using imaging to predict treatment response in genitourinary malignancies. Eur Urol Focus 2017. https://doi.org/10.1016/j.euf.2017.09.003

  46. Harisinghani MG, Saksena MA, Hahn PF, King B, Kim J, Torabi MT, et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? Am J Roentgenol. 2006;186(1):144–8.

    Article  Google Scholar 

  47. Harisinghani MG, Saini S, Weissleder R, Hahn PF, Yantiss RK, Tempany C, et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. Am J Roentgenol. 1999;172(5):1347–51.

    Article  CAS  Google Scholar 

  48. Harisinghani MG, Saksena M, Ross RW, Tabatabaei S, Dahl D, McDougal S, et al. A pilot study of lymphotrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology. 2005;66(5):1066–71.

    Article  Google Scholar 

  49. Will O, Purkayastha S, Chan C, Athanasiou T, Darzi AW, Gedroyc W, et al. Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol. 2006;7(1):52–60.

    Article  Google Scholar 

  50. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–9.

    Article  Google Scholar 

  51. Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA–PET in prostate cancer management. Nat Rev Urol. 2016;13(4):226–35.

    Article  CAS  Google Scholar 

  52. Savelli G, Muni A, Falchi R, Zaniboni A, Barbieri R, Valmadre G, et al. Somatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patients. Ann Transl Med. 2015;3(10):145.

    PubMed  PubMed Central  Google Scholar 

  53. Usmani S, Ahmed N, Marafi F, Rasheed R, Amanguno HG, Al KF. Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CT. Clin Nucl Med. 2017;42(5):410–3.

    Article  Google Scholar 

  54. Gaytan F, Barreiro ML, Caminos JE, Chopin LK, Herington AC, Morales C, et al. Expression of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in normal human testis and testicular tumors. J Clin Endocrinol Metab. 2004;89(1):400–9.

    Article  CAS  Google Scholar 

  55. Charron CL, Hou J, McFarland MS, Dhanvantari S, Kovacs MS, Luyt LG. Structure−activity study of ghrelin(1−8) resulting in high affinity fluorine-bearing ligands for the ghrelin receptor. J Med Chem. 2017;60:7256–66.

    Article  CAS  Google Scholar 

  56. Penna FJ, Freilich DA, Alvarenga C, Nguyen HT. Improving lymph node yield in retroperitoneal lymph node dissection using fluorescent molecular imaging: a novel method of localizing lymph nodes in guinea pig model. Urology. 2011;78:232.e15–8.

    Article  Google Scholar 

  57. Bjurlin MA, McClintock TR, Stifelman MD. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for robotic partial nephrectomy. Curr Urol Rep. 2015;16(4):20.

    Article  Google Scholar 

  58. Ramírez-Backhaus M, Mira Moreno A, Gómez Ferrer A, Calatrava Fons A, Casanova J, Solsona Narbón E, et al. Indocyanine green guided pelvic lymph node dissection: an efficient technique to classify the lymph node status of patients with prostate cancer who underwent radical prostatectomy. J Urol. 2016;196(5):1429–35.

    Article  Google Scholar 

  59. Hekman MCH, Rijpkema M, Langenhuijsen JF, Boerman OC, Oosterwijk E, Mulders PFA. Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy. Eur Urol Focus. 2017;S2405–4569(17):30114–1.

    Google Scholar 

  60. van den Berg NS, Buckle T, KleinJan GH, van der Poel HG, van Leeuwen FWB. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur Urol. 2017;72(1):110–7.

    Article  Google Scholar 

  61. Xia L, Venegas OG, Predina JD, Singhal S, Guzzo TJ. Intraoperative molecular imaging for post-chemotherapy robot-assisted laparoscopic resection of seminoma metastasis: a case report. Clin Genitourin Cancer. 2018;15(1):61–4.

    Article  Google Scholar 

  62. Vermeeren L, Meinhardt W, Bex A, van der Poel HG, Vogel WV, Hoefnagel CA, et al. Paraaortic sentinel lymph nodes: toward optimal detection and intraoperative localization using SPECT/CT and intraoperative real-time imaging. J Nucl Med. 2010;3:376–82.

    Article  Google Scholar 

  63. Vermeeren L, Valdés Olmos RA, Meinhardt W, Bex A, van der Poel HG, Vogel WV, et al. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies. Eur J Nucl Med Mol. 2009;36(7):1029–36.

    Article  CAS  Google Scholar 

  64. Brouwer OR, Valdes Olmos RA, Vermeeren L, Hoefnagel CA, Nieweg OE, Horenblas S. SPECT/CT and a portable -camera for image-guided laparoscopic sentinel node biopsy in testicular cancer. J Nucl Med. 2011;52(4):551–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Joice.

Ethics declarations

Conflict of Interest

Gregory A. Joice, Steven P. Rowe, Michael A. Gorin, and Phillip M. Pierorazio each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joice, G.A., Rowe, S.P., Gorin, M.A. et al. Molecular Imaging for Evaluation of Viable Testicular Cancer Nodal Metastases. Curr Urol Rep 19, 110 (2018). https://doi.org/10.1007/s11934-018-0863-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-018-0863-3

Keywords

Navigation